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Chapter 1.

INTRODUCTION

The design of aircraft and space structures requires large teams of engineers, working in concert, to
select a design which satisfies all requirements. Typically this design goes through further refinement or
modification as more knowledge is gained about requirements, or as new conditions are imposed. Until
recently, this effort consisted of applying laborious empirical procedures wherein the design is perturbed
and reanalyzed many times. This redesign frequently is required because two or more disciplines have
conflicting demands that require compromise.

The ASTROS (Automated STRuctural Optimization System) software system has resulted from a need
for an automated design and analysis tool that will perform the tradeoff and synthesis tasks in a
systematic way This introduction provides a broad overview of ASTROS concepts and capabilities, dis-
cusses the contents of ASTROS documentation and provides information on supplementary references.

1.1.  ASTROS CONCEPTS

ASTROS is a finite element-based software system that has been designed to assist, to the maximum
practical extent, in the preliminary design of aerospace structures. A concerted effort has been made to
provide a tool that has general capabilities with flexibility in their application.

A vital consideration in software of this type is that the key disciplines that impact the design must be
included in the automated design task. This multidisciplinary aspect of the program has been imple-
mented in an integrated way so that all the critical design conditions are considered simultaneously.

In addition to the interaction of several disciplines, ASTROS can treat multiple boundary conditions and,
within each boundary condition, multiple subcases. The system is not arbitrarily restricted by problem
size, and it conforms to the current environment for performing structural analysis in the aerospace
industry. The practical limitations on problem size are available disk space and data processing time.
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ASTROS supports the multidisciplinary nature of design by implementing the disciplines in separate
modules and by the use of MAPOL (Matrix Analysis Problem Oriented Language), a high level language,
to direct the interactions among the modules. Data transfer is accomplished using the eBase (Engineer-
ing Database).

The requirement for large problem size is addressed by the presence of a Dynamic Memory Manager
that allocates memory in a way that eliminates the need for fixed length arrays. Allocations are made
and destroyed dynamically so that free memory can be shared by the engineering modules.

Finally, compatibility with the aerospace environment is enhanced because the ASTROS procedures
resemble those of NASTRAN in terms of user input and pre- and post-processor interfaces. Most impor-
tantly, from a user point-of-view, the Bulk Data formats have been taken directly from NASTRAN and
modified only if the design considerations required such a modification in the data or, in a few cases, if
minor changes result in superior capability. New Bulk Data entries have been created to input design
information and data needed to run the steady aerodynamics and other analyses specific to ASTROS.

1.2.  ASTROS CAPABILITIES

The balance of this manual documents the engineering analyses capabilities of ASTROS. This section
gives a brief overview of these capabilities, which are:

1. Static analysis

2. Modal analysis

3. Aerodynamic Analysis

4. Dynamic Analysis

Additionally, the Optimization step, which encompasses all of these disciplines, in discussed. The statics
analysis methodology is based on a finite element representation of the structure, as are all the struc-
tural analysis disciplines in ASTROS. The static analyses compute responses to statically applied me-
chanical (e.g., discrete forces and moments), thermal and gravity loadings. Static deformations and their
resultant stresses are among the computed responses. An extensive design capability is provided for the
static analysis discipline. Details of this discipline are provided in Chapter 6 of this manual.

The modal analysis capability in ASTROS eigenfrequencies and normal modes of a structure to be
computed. As outlined in Chapter 7, the reduction of the finite element model to a size tractable for
performing an eigenanalysis is performed by one of two techniques. In the first, the degrees of freedom
are reduced to a user specified analysis set through the use of Guyan reduction. The second technique
employs Dynamic Reduction concepts to produce basis vectors that are "rich" in the eigenvectors of the
structure. It is also possible to use the Lanczos eigensolver on large systems that are not reduced. The
design capability for modal analysis is limited to the ability to impose limits on the natural frequencies of
the structure. Apart from its inherent usefulness, the modal analysis capability also serves as the basis
for further analyses, such as flutter, transient response and frequency response, that can be performed
using modal coordinates.

The aerodynamic analyses in ASTROS include both steady and unsteady formulations. These could be
considered as separate disciplines, but they are linked in this manual because of the fact that they share
the method for linking quantities computed in the aerodynamic models to the structural model. Chapter
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8 first discusses these spline techniques and then separately discusses the steady and unsteady aerody-
namic analyses. Chapter 9 discusses the use of the steady aerodynamics to provide loads on a free-flying
aircraft for specified longitudinal flight conditions and to provide estimates of the rolling effectiveness of
control surfaces in antisymmetric maneuvers. All the design conditions that can be applied to a static
analysis can also be imposed on the symmetric flight condition. In addition, limits on the aircraft’s lift
effectiveness and rolling effectiveness can be imposed.

The unsteady aerodynamics are used for flutter, gust and nuclear blast analyses. Chapter 10 provides a
description of the algorithms used to perform flutter analysis and design. Flutter design requirements
are specified in terms of the required damping levels at user specified velocities.

The dynamic analysis disciplines listed above represent a selection of methods that are detailed in
Chapters 11 and 12. These methods share the characteristic that they include time or frequency varying
loads as well as inertial terms (i.e., those proportional to the acceleration of the structure) and optional
damping terms (i.e., those proportional to the velocity of the structure). Chapter 11 discusses transient
and frequency analyses that utilize either a direct or a modal representation of the structure. All of the
dynamic analyses in ASTROS share the property that only an analysis capability, with no design condi-
tions, is provided. The rationale for including these further analyses, in what is basically a structural
design procedure, is that it allows the user to check the final design for a variety of other conditions
within the context of ASTROS. This is in contrast to requiring the user to understand and develop models
for a series of more specialized software systems.

Finally, optimization procedures are described. If only stress, or strain, constraints are included in the
design task, the fully stressed design option may be used. For more general design tasks, mathematical
programming techniques have been implemented. Chapter 13 discusses both of these methods and
provides details on the extensive use of approximation concepts to make the design task tractable when
many design variables and design conditions are used.

1.3.  DOCUMENTATION

This section provides a brief description of each of the ASTROS documentation manuals, as well as other
references that are central to ASTROS. The ASTROS documentation consists of five manuals:

ASTROS Theoretical Manual

ASTROS User’s Reference Manual

ASTROS Programmer’s Manual

ASTROS Database Schemata

ASTROS Installation Guide and System Support Manual

This Theoretical Manual contains theoretical background on both the computer science and engineering
analyses of the ASTROS system. Emphasis is given to the more innovative aspects of the ASTROS
system while relying on other sources to detail those features that are common to other software prod-
ucts.

The User’s Reference Manual contains the information needed to run the ASTROS system. The user
input is documented, as is information on the output quantities that can be computed. The user is also
provided with information on how to modify the standard MAPOL sequence or to write a specialized
MAPOL program to tailor ASTROS to a particular application.
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The Programmer’s Manual is useful for researchers who wish to make modifications to the ASTROS
code, either to insert a new module or to modify an existing capability. 

The Database Schemata Manual provides the documentation of the database entities.

Finally, the Installation Guide and System Support Manual provide instructions for installing the
software and "tuning" it to a specific computing environment.

In terms of subsidiary documentation, ASTROS relies heavily on NASTRAN in terms of methodology and
as a starting point for code development. NASTRAN documentation, therefore, is useful in understanding
ASTROS. As mentioned, the ASTROS documentation, and particularly the Theoretical Manual, empha-
sizes the more novel aspects of the ASTROS code while relying on this other documentation for the more
standard features. For example, this theoretical manual contains no description of the large matrix
utilities while the NASTRAN Manual of Reference 1 devotes 21 pages to these utilities. This reliance is
less evident in the other manuals. The ASTROS Programmer’s Manual is considerably more succinct
than the corresponding NASTRAN manual of Reference 2 in terms of module definition, but does provide
some documentation for each module. The ASTROS User’s Manual is intended to be standalone and is
sufficiently different from the corresponding manual of Reference 3 that one is advised not to rely too
heavily on preconceptions based on using NASTRAN. On the other hand, the similarities between
ASTROS and NASTRAN inputs are so marked that it should be extremely easy for a user to go from one
system to another.

Finally, the is another manual called the Applications Manual which serves a number of functions. The
first is to describe, in some detail, alternate sources of information. Secondly, it provides guidelines and
modeling information on the use of more unique features of the procedure. For example, the steady
aerodynamic and design capabilities are discussed in some detail since these are unique to ASTROS.
Finally, the Applications Manual contains a number of sample runs that can be used to check out the
initial installation of the procedure and further guide ASTROS usage. Note that the Applications Manual
was created under the original ASTROS contract effort, and it has not been updated since 1988.
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Chapter 2.

BASICS AND NOMENCLATURE

This section provides definitions of basic structural analysis terms as they are used in ASTROS. Recall
that ASTROS concepts and notation follow those used in NASTRAN to the maximum extent possible.
With the exception of subsection 2.5, which describes the notation used for sensitivity and optimization
equations, the contents of this section should be familiar to a typical NASTRAN user and are redundant
with existing NASTRAN documentation, such as that found in References 1 and 14. It is provided here
because the use of coordinate systems and displacement sets are pervasive in the remainder of this
manual and it is therefore necessary to have clear definitions of them.

2.1. STRUCTURAL GEOMETRY MODELING

The geometry of the structural model is defined by the user in terms of grid points and scalar points.
Grid points are located in space by user defined coordinates and each point has six degrees of freedom.
Scalar points have a single degree of freedom that has no geometric definition but is included in the
solution set. Scalar points are used to conveniently include scalar elements, such as springs and mass
elements, in the structural representation.

The geometry definitions are made in terms of coordinate systems. To simplify input, the user is
permitted to define any number of coordinate systems in the bulk data packet. ASTROS then rationalizes
these systems into a single system for performing the analyses. The input (and output) coordinates can
be specified in terms of rectangular, cylindrical or spherical systems. The concepts of Local, Global
and Basic coordinate systems also need to be understood in order to prepare ASTROS input and interpret
the results.

A local coordinate system is one that is chosen for convenience in specifying element geometries. A
given structure is typically divisible into components and surfaces that naturally present themselves.
Each of these is modeled most efficiently through the use of a local coordinate system.

THEORETICAL MANUAL

ASTROS BASICS AND NOMENCLATURE 2-1



The Global coordinate system is the single system in which the structural analysis is performed and
the results are presented. It should be emphasized that this coordinate system is not necessarily defined
by a single axis system. Instead, it is the collection of all the user specified output coordinate systems.

The Basic coordinate system is the single system relative to which all other systems are defined. In
this case, it can be depicted by a single axis system and it is necessary that all geometric points be able to
be defined in this coordinate system before ASTROS can proceed. This definition is done internally and
the user has no need to be aware of the computations required to get the coordinates into this system.

2.2. DISPLACEMENT SETS

ASTROS has maintained the NASTRAN terminology in defining displacement sets in structural analy-
sis. This discussion introduces these sets since their definition is required in all the disciplines described
in the remainder of this manual. The following sections discuss the four classes of sets: physical, dynamic
reduction, dynamic analysis and unsteady aerodynamic .

2.2.1. Physical Sets

The term physical refers to those sets whose members have a specific physical meaning and are related
directly to the degrees of freedom in the analysis. Figure 2-1 depicts the hierarchy of sets that are used in
the standard static and modal analysis disciplines described in Chapters 6 and 7.

Starting at the top of the figure, the g-set contains all the degrees of freedom in the structural model. The
size of this set is equal the number of scalar points plus six times the number of grid points. This set can
be divided into one set (the m-set) whose members are defined to be explicitly dependent on the second,
independent set (the n-set). These dependencies are designated multipoint constraints.

At the next level of division, the n-set degrees of freedom are divided into those whose displacements are
user specified (the s-set) and those that are left free for solution (the f-set). The specified displacements
are most typically used to constrain rigid body motions, either by setting degrees of freedom with no
associated stiffness to zero or by applying fixity conditions at the structure’s boundary. They can also be
used to force the structure to deform to certain user specified values. It is useful to make a distinction
between those degrees of freedom that are constrained for all boundary conditions (permanent single
point constraints) and those that may be boundary condition dependent.

The next reduction divides the f-set into the omitted (the o-set) and the analysis (the a-set) degrees of
freedom. This reduction is done primarily to make a modal analysis task tractable and has less utility for
a static analysis. The multidisciplinary nature of ASTROS, however, makes it desirable to use an a-set in
a static analysis if the same boundary condition also requires dynamic analyses. The selection of degrees
of freedom for the two sets is somewhat arbitrary and therefore puts a burden on the user. Dynamic
Reduction, discussed in Chapter 7.1, is an attractive alternative to this selection process.

If the structure has rigid body degrees of freedom, such as a complete aircraft or spacecraft, a further
reduction is required before the static response can be obtained. In this reduction, the a-set is divided into
a set that is just sufficient to remove the rigid body motions (the reference or r-set) and a set of remaining
(the left over or l-set) degrees of freedom.
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Figure 2-1. Hierarchy of Displacement Sets 
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2.2.2. Dynamic Reduction Sets

The Dynamic Reduction technique of Chapter 7.1 defines two further sets. The first is a set of
generalized degrees of freedom for the approximate eigenvectors of the reduction process and is desig-
nated the j-set. The second is a set of generalized degrees of freedom for the inertia relief shapes and is
designated the k-set.

2.2.3. Dynamic Analysis Sets

Modal analyses produce generalized coordinates that represent further sets that are used in sub-
sequent dynamic analyses, such as flutter and frequency response. In addition, the representation of
control systems is effected through the definition of extra points that make up a further set. The sets
involved in dynamic analysis are shown in Figure 2-2. The set of generalized coordinates associated with
the eigenvectors determined in a modal analysis is designated the i-set. The extra point degrees of
freedom are contained in the e-set and the union of these two sets is the h-set. Dynamic analyses
performed directly in the physical degrees of freedom utilize the d-set, which is the union of the e-set and
the a-set. A final set, which is in addition to those shown in Figures 2-1 and 2-2, is the union of the g-set
and the e-set and it constitutes the complete physical degrees of freedom (the p-set).  

2.2.4. Unsteady Aerodynamic Sets

As discussed in Chapter 7, ASTROS aerodynamic models are independent of the structural model and
therefore have their own degrees of freedom. For the unsteady aerodynamics model, ASTROS follows the
NASTRAN convention and refers to these degrees of freedom as the k-set and uses the j-set to refer to the
aerodynamic boxes. Note that the j-set and k-set have been defined in a different manner in Section 2.2.2
and the appropriate definition must be determined from context.

Direct Response

d-Set

Modal Response

h-Set

Extra Points

e-Set

Analysis
DOF

a-Set

Modal
Coordinates

i-Set

Figure 2-2. Relation of Dynamic Analysis Sets
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2.3.  NOMENCLATURE

Standard nomenclature, as used in structural analysis literature in general and NASTRAN in particular,
has been adopted to the maximum extent possible. This section defines matrix and subscript notation as
it is used throughout the balance of this manual. This is not a comprehensive list, with additional
definitions for specialized notation provided where the term is first used. The standard MAPOL sequence
also conforms to this notation, with the limitation that subscripting is not available in the MAPOL
language so that matrix names and their subscripts make up the MAPOL name (e.g., Maa in this

document becomes MAA in the MAPOL sequence).

2.3.1. Matrices and Vectors

Matrices and vectors in the manual are denoted by bold italicized type. The matrices defined in Table 2-1
are typically subscripted to indicate the set to which the matrix is referred (e.g., the Maa matrix just

discussed is in the a-set while the Moa matrix has rows associated with the o-set and columns associated

with the a-set). 

TERM
(M)ATRIX or 

(V)ECTOR
DESIGNATION

B M Damping

D M Rigid body transformation

G M Transformation matrix, including spline matrices for steady aerodynamics

K M Structural stiffness

M M Mass

m M Rigid body mass

P V/M Applied load

u V/M Displacement

UG M Unsteady aerodynamic spline

YS V Enforced displacements

Table 2-1. Matrix Nomenclature
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2.3.2. Subscripts

The subscripts listed in Table 2-2 correspond, in most cases, to the displacement sets discussed in Section
2.2. Certain of the subscripts are seen to have multiple definitions and the appropriate definition will
either be clear from context or defined explicitly in the text.

SUBSCRIPT DEFINITION

a Analysis set

d Dynamic set

e Extra point set

f Free set

g Global set

h Modal analysis set

i Modal coordinates set or Design variable identification

j Inertia relief shape coordinates set or Constraint identification or Aerodynamic box set

k Approximate eigenvector coordinates set or Aerodynamic set

l Left over set

m Multipoint constraint set

n Independent set

o Omitted set

p Physical set

r Rigid or support set

s Single point constraint set

Table 2-2. Subscript Nomenclature
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2.3.3. Superscripts

Table 2-3 presents a small set of superscripts that conform to those used in general structural analysis.  

2.3.4. Optimization Nomenclature

Table 2-4 presents the most commonly found nomenclature used for sensitivity and optimization equa-
tions.

SUPERSCRIPT DEFINITION

I Imaginary part

R Real part

T Matrix transpose

-1 Matrix inverse

x
.

(Single dot) Time first derivative or velocity

x
..

(Double dot) Time second derivative or acceleration

a Aerodynamic terms are included

Table 2-3. Superscript Nomenclature

SYMBOL DEFINITION

F Objective function

R Right-hand-side of sensitivity equations

t Vector of local design variables

v Vector of global design variables

∂
∂t

  or  
∂

∂v
Sensitivity coefficient

∆ Finite difference step size

A Matrix of constraint sensitivities

g Vector of inequality constraint values

Table 2-4. Optimization Nomenclature
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Chapter 3.

SYSTEM ARCHITECTURE

A large, multidisciplinary software system such as ASTROS necessarily requires a flexible system architec-
ture that serves as the basis for construction and integration of the software developed. The detailed specifi-
cation of this architecture contains a significant computer science content that is not only outside the scope of
this manual, but also not of general interest. Nonetheless, the ASTROS user should have a basic familiarity
with this architecture, since it permeates the implementation and application of the program. These basics
are provided in this Chapter, while details into particular aspects of the system design can be found in
References 10, 11, and 12.

Figure 3-1 illustrates the components of the ASTROS architecture, emphasizing its modular form. An
additional component that does not fit neatly on the figure is the Dynamic Memory Manager. Each of
these components is discussed in the following sections.

3.1.  THE ASTROS EXECUTIVE SYSTEM

The Executive System is the heart of the software. It initiates the procedure, controls program flow and
terminates execution. It is convenient to think of the Executive System as a stylized computer with four
components found in an actual computer:

1. Control unit

2. High level memory

3. Execution monitor

4. Input/output subsystem
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3.1.1.  The Controller

The control unit, or controller, begins the execution. This is the routine that first performs standard
initiation tasks, such as accommodating machine-dependent idiosyncrasies and initiating elapsed and
CPU timers. Subroutines are also called which initialize the system and engineering databases and the
dynamic memory manager. An initial pass is made through the input data stream, breaking it into five
packets: Debug, MAPOL, Solution, Function, and Bulk Data. Information on the function and input
requirements for each of these packets is given in the User’s Manual, but the processing of the MAPOL
packet needs to be further explained here in terms of how it effects the initiation and execution of the
ASTROS system.

From the point of view of the user, ASTROS is driven by MAPOL (Matrix Analysis Problem Oriented
Language). Such a control language, similar to the DMAP of NASTRAN or the typical query language of
a database management system, has proven to provide maximum flexibility for the user. In particular,
MAPOL provides features that include:

1. Structured, algorithmic language syntax

2. Special data types for matrices and relations

3. User-written procedures and an extendible procedure library

4. Complete run-time utility library

5. Embedded database operations.

DATA
BASE

UTILITY
LIBRARY

FUNCTIONAL
MODULE

EXECUTIVE
SYSTEM

FUNCTIONAL
MODULE

FUNCTIONAL
MODULE

USER
INPUT

SOLUTION
RESULTS

Figure 3-1. The ASTROS System Architecture
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Just as for any high level language, the translation of a MAPOL sequence from the actual input to the
form used in controlling the execution is performed by a compiler. The MAPOL compiler creates two
relations. The first, called MEMORY, is a map of the memory defined by the MAPOL program and
discussed in the next section. The second relation, called MCODE, represents the executable code that
performs operations directly and calls the functional modules within the ASTROS system.

Depending on user input, the controller operates on these two relations in one of three ways. If the user
has selected the standard MAPOL sequence, there is no MAPOL packet and the MCODE and MEMORY
relations contained in the system database are retrieved directly by the execution monitor. If the user has
modified the standard sequence, an editing process takes place on the stored standard sequence. The
edited sequence is then recompiled, replacing the data in the MCODE and MEMORY relations. Finally, if
the user has supplied a complete customized MAPOL sequence, the data in the two relations are replaced
with new entries created by the MAPOL compiler.

3.1.2.  High Level Memory

The MAPOL compiler reserves a space in memory for the ASTROS Run-time Memory. (Note that this
is separate from the MEMORY relation just discussed.) ASTROS run-time memory is of a high-order.
This means that, unlike a normal computer memory, more than one word is used to store a data item.
The ASTROS memory contains entries that are five single-precision computer words in length. The first
word contains the data type and the next four words the actual memory contents. These contents may be
integers, real values, in single or double precision, complex values, in single or double precision, or
character data defining the names of database entities. Then, in a manner analogous to most machines,
memory addresses are referenced by the executable code and modified during execution.

3.1.3.  Execution Monitor

Following the initiation tasks discussed in above, the controller invokes the Execution Monitor to drive
the ASTROS system. This monitor, using the instructions contained in the MCODE relation, directs the
tasks specified in the MAPOL sequence. The monitor contains a processor which performs basic arithme-
tic and logical operations and also interfaces directly with a run-time library that performs simple
mathematical and database operations. For more complex tasks, control is passed to the functional and
utility modules discussed in Sections 3.5 and 3.6.

3.1.4.  Input/Output Subsystem

The executive system controls the files that are to be used for input and output. The principal I/O is
performed by UAI’s proprietary Engineering Database (eBase) as discussed in Section 3.2. The definition of
FORTRAN logical units used for the user interface is also performed by the executive. Finally, a limited
capability for sending data directly to the user output file is available from the MAPOL packet.

3.2.  THE DATABASE

In a large scale engineering analysis system such as ASTROS, the efficient handling of the voluminous
data required is a key element in the viability of the system. A specially designed database, called eBase
(Engineering Database), is used the ASTROS system. The design of this database recognized the need
for handling three distinct types of data. First, the structural analysis aspects of ASTROS impose a
requirement for the storage and retrieval of very large, often sparse, matrices. A storage method is
needed that minimizes disk storage requirements while allowing algorithms to be developed that can
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perform matrix operations of virtually unlimited size. The second requirement is the need to access
individual data items directly and rapidly with minimum physical I/O. Such data items include the
thickness of a single finite element or the data defining the properties of a particular material. Finally,
there is a need to access heterogeneous collections of unstructured data very efficiently. This type
typically represents working data which is generally used on an all-or-nothing basis within an individual
module.

Existing available databases provide some, but not all, of these capabilities. In addition, many of these
are commercial products with proprietary restrictions that are inconsistent with the basic ground rules
for developing the ASTROS system. Therefore, a unique database was constructed which supports these
three different representations. A significant benefit that accrued from this customized design was that a
common structure was formulated for accessing the three types of data, i.e., a uniform, common applica-
tions interface has been provided to support each of the database entity classes. For example, a module
may position to a specific matrix column, relational row, or unstructured record. This can then be
followed by fetching all, or part, of the data stored at the current position.

Each of the three data types is briefly described in the following sections. The Programmer’s Manual
contains applications interface information.

3.2.1. Matrix Entities

ASTROS is based upon the finite element method of structural analysis extended to include optimization.
This method requires that all governing equations of motion be written in matrix form. This allows
complex solutions to be performed using straightforward matrix algebra. Since the order of these matri-
ces may be very large, it is essential that they be stored in a compressed, or packed, format. This format
exploits the strongly banded nature of most structural matrices — the low density of nonzero terms in
these matrices allows enormous saving of storage space.  

The packed format of matrices is shown in Figure 3-2. There are actually two levels of data compression.
Firstly, any null column in a matrix is completely omitted. This extension to previous methods of packing

1 ROW n ... ROW n ... END

2 ROW n ... END

3 ROW n ... END

4 ROW n ... ROW n ... END

ENT1 ENT2 ENT3

ENT4 MATX ENT6
DATABASE

Figure 3-2. The Packed Matrix Format

THEORETICAL MANUAL

3-4 SYSTEM ARCHITECTURE ASTROS



is well suited to the extremely sparse matrices arising from sensitivity calculations. Secondly, only
strings of nonzero terms in a non-null column are actually stored. Each string contains a two word
"header" which specifies the row position of the first nonzero term followed by the number of terms
appearing. The header is then followed by the actual numeric values. This method of storage, pioneered
by NASTRAN, has proven to be very effective.

3.2.2. Relational Entities

Relational Entities are essentially tables. The formalization of this type of data in recent years has
found relevance across a wide variety of data processing applications (Reference 13). Each relation has
rows, called entries and columns, called attributes. Each attribute is given a descriptive name, a data
type, and constraints on the values that the attribute may assume. These definitions are referred to as
the schema of the relation. An example of a relation defining grid point data is shown in Figure 3-3. The
importance of relational data to design optimization is that a single entry may be directly accessed based
on qualified values of one or more of its attributes. This minimizes the actual I/O transfer required when
modifying small amounts of data. eBase further extends this capability by allowing a mechanism for
rapidly accessing all of the data in a relation, if such access would be more efficient. 

GID X Y Z

101 0.0 0.0 0.0

102 1.0 0.0 0.0

103 1.0 1.0 0.0

104 0.0 1.0 0.0

ENT1 ENT2 ENT3

ENT4 GRID ENT6

DATABASE

ENTRIESATTRIBUTES

Figure 3-3. Example of a Relational Entity
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3.2.3. Unstructured Entities

There are many times that a software module requires temporary, or scratch, disk space while perform-
ing its task. These data are generally highly local and will not be passed to other modules within the
system. To accommodate this requirement effectively, eBase supports a Freeform Entity type composed
of records containing any arbitrary collection of data as shown in Figure 3-4. Once again, eBase has the
capability to directly access each of the records within the entity. 

3.3. THE DYNAMIC MEMORY MANAGER

A key feature of the ASTROS system, that is not shown in Figure 3-1, is the Dynamic Memory
Manager. This feature allows modules to be written without resorting to fixed size arrays. A suite of
utility routines is available to allocate and release blocks of dynamic memory. These blocks reside in the
physically allocated memory region as shown in Figure 3-5. The actual size of the memory block is
determined at execution time. Modules using this feature may be designed to allow spill logic which
allows operations to be performed on data that exceeds the size of available memory. Dynamic memory
management is also used by the database in performing its buffered I/O functions. This represents an
extension to the NASTRAN open core concept in that the application programmer is able to manipulate
memory blocks rather than being given the total memory available in one block. 

1 ... ... ... ... ... ... END

2 ... ... ... END

3 ... ... ... ... END

4 ... ... ... ... ... ... END

5 ... ... ... END

ENT1 ENT2 ENT3

ENT4 STUF ENT6

DATABASE

Figure 3-4. A Freeform Data Entity
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3.4. THE USER INTERFACE

The User Input and Solution Results blocks of Figure 3-1 represent the interface with ASTROS. Only a
very brief discussion is provided of these blocks here, since the entire User’s Manual is devoted to the
documentation of these files.

The User Input is a series of optional packets that are interpreted by the Executive system to direct the
design and analysis tasks. The first packet contains "Debug" directives that can be used by a sophisti-
cated user to diagnose problems with the execution. This packet is never required, but may be useful in
diagnosing software problems. The second packet contains the MAPOL sequence which directs the flow of
execution. This packet is optional, since the standard MAPOL sequence is available to handle the
majority of ASTROS tasks.

A third input packet contains Solution Control directives that select the design and analysis tasks,
including the boundary conditions and the required analysis disciplines. This packet also provides output
requests that define the majority of the Solution Results outputs. While not required, this packet is
almost always needed to direct the procedure.

The fourth input packet is the Function packet, which is also optional. The Function packet is used if the
design model includes functional constraints or a functional objective.

The final input packet contains the bulk data which defines the physical and geometric characteristics of
the structural system that is to be analyzed and designed. The formats of these data entries are compat-
ible with those used in NASTRAN, to the maximum extent possible. The bulk data packet is almost

BLOCK 1

BLOCK 2

...

...

...

BLOCK n

BLOCK n+1

BLOCK n+2

...

...

...

BLOCK m

...

...

...

GROUP 1

GROUP 2

EXECUTABLE CODE
AND DATA

LOCAL ARRAYS

FREE
MEMORY

ALLOCATED REGION SIZE

Figure 3-5. Dynamic Memory
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always required, with the exception of certain "restart" runs where an initial run has completely specified
the problem to be analyzed.

The Solution Results that are output are intended to provide the user with the ability to assess the
performance of ASTROS on the designated task. Since a multidisciplinary design task could potentially
produce an overwhelming amount of output, an effort was made to provide minimal default output.
Instead, Solution Control commands provide a means of selecting specific quantities for output. Addi-
tional output is available by turning on print requests that are imbedded in calls to functional modules in
the MAPOL sequence. This latter type of output requires a modification to the standard MAPOL se-
quence and is typically of minimal interest to a routine user. Finally, utilities allow the user to print
database information to the user’s output.

3.5.  ENGINEERING MODULES

The engineering modules of Figure 3-1 are those which perform the specific engineering tasks required in
the ASTROS system. The remainder of this manual is concerned with describing the algorithms used in
these tasks so that this discussion will be limited to what characterizes an engineering module.

The concept of modular programming is essentially one of dividing the overall programming tasks into a
number of non-interacting units that can be separately designed and implemented. Input and output
data are rigorously defined and control is sequentially passed from one module to another. In the
ASTROS system, the Executive System provides this control so that an engineering module can only be
accessed through the MAPOL sequence. Modular independence is enforced by requiring that:

each module establish its own base address in dynamic memory

database entities required by a module must be opened before their data can be accessed

all database entities must be closed before the module is exited

all dynamic memory must be freed before the module is exited

In essence, the requirement of modularity is that all intermodular data communication take place
through rigorously defined data formats on the database.

One exception to this module independence in ASTROS is that there is a limited amount of data that are
passed through common blocks at the system level. These data include items such as unit number for the
read and write files, engineering constants and conversion factors (e.g., pi and the radian to degrees
conversion) and system dependent numbers, such as number of lines per page in the output. It would, of
course, be possible to independently define these quantities in each module, but this creates other
bookkeeping problems. This form of communication is considered part of the executive system since the
data are global and the communication is one way. That is, the executive "tells" a module the output
logical unit number, never vice versa. Also, this form of communication is never used to pass data
between modules.

General utilities perform relatively simple functions that are required repeatedly in any program like
ASTROS. Examples are data sort and search routines, CPU timers, data converters and print controllers.
A particular reason for identifying and segregating these functions is to avoid duplication of code when
two programmers have a similar requirement. Another reason is that a number of these functions are
machine dependent so their segregation aids in the installation of ASTROS on a new computer system.  
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Large matrix utilities are a suite of routines that perform operations on the matrix database entities
discussed in Section 3.2.1. It is these utilities that permit ASTROS to address problems of essentially
unlimited size. Table 3-1 defines the large matrix utilities available in ASTROS. Since these functions
are required repeatedly in a structural analysis task, these utilities can be accessed either directly from
the executive system or from the functional modules, as shown in Figure 3-1. Not all utilities have this
feature and those that do require an interface routine between the executive system and the utility. 

Considering this fact, the distinction between an engineering module and a utility called by the executive
is blurred. As an example, the large matrix utility to multiply matrices can be viewed as either an
engineering module or a utility. For the purposes of this discussion, it is designated a utility, with the
term engineering module reserved for the basic engineering tasks. The distinction being that an engi-
neering module may call a utility through its application interface but may never call another engineer-
ing module. The executive system may call both engineering modules and utility modules.

UTILITY FUNCTION

PARTN A  →  




 A11
 A21

   
A12
A22

 




MERGE A  ←  




 A11
 A21

   
A12
A22

 




SDCOMP A  →  L D L T

FBS X  =  L D L −T B

DECOMP A  →  L U

GFBS X  =  L U  −1 B

MXADD C  =  αA + βB

MPYAD D  =  A B + C

TRNSPOSE B  =  AT

REIG [K − λ M ] ϕ  =  0

Table 3-1. Large Matrix Utilities
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Chapter 4.

MULTIDISCIPLINARY ANALYSIS
AND DESIGN

This chapter describes the concepts and theoretical basis of Multidisciplinary Design Optimization.

4.1. INTRODUCTION

The ASTROS system was developed to have maximum impact at the preliminary design stage of an
aerospace structural design. At this stage, the configuration has been defined and the materials have
been selected. The design task is the determination of structural sizes that will provide an optimal
structure while satisfying the numerous requirements that multiple disciplines impose on the structure.
A key motivation for the development of a single automated structural optimization tool is that such a
tool can shorten the design cycle time and provide better structural designs. This is particularly true as
composite materials come into widespread use. Balancing conflicting requirements for the strength and
stiffness of the structure while exploiting the benefits of anisotropy (e.g., "aeroelastic tailoring") is per-
haps an impossible task without assistance from an automated design tool. The use of a single tool can
also bring the design task into better focus among design team members, thereby improving the insight
into their overall task.

The development of a system to meet these needs is by no means a new endeavor. Concepts of automated
structural design have been advanced for over 30 years and a number of software procedures have been
developed. Notable among these are the TSO (Reference 4) and FASTOP (Reference 5) procedures that
were developed under Air Force sponsorship. NASA has been very active in this area and has sponsored,
or performed in-house, many programs that have served to crystallize the methodologies that are applica-
ble in this area (References 6 and 7).
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The basic objective in developing the ASTROS system has been to provide a state-of-the-art design tool
that integrates existing methodologies into a unified multidisciplinary package. Concepts from TSO and
FASTOP were adapted for ASTROS; for example, TSO’s capability to simultaneously design to strength,
flutter, displacement, and other requirements has been incorporated into ASTROS, as has FASTOP’s use
of finite element structural analysis.

The distinctive attribute of ASTROS is the scope of conditions it can consider in a design task. Multiple
boundary conditions, each permitting a range of analyses (e.g., statics, modes and flutter) can be treated.
Also, limits on problem size have been removed for the most part.

The remainder of this section describes the implementation of multidisciplinary analysis and design in
ASTROS; first by providing an overview of the design algorithm and then by defining the design task in a
mathematical and a physical sense.

4.2.  MULTIDISCIPLINARY OPTIMIZATION

A general optimization task may be defined in a mathematical form as:

Find the set of design variables, v, which will minimize an objective function

F ( v ) (4-1)

subject to constraints:

gj ( v )  ≤  0.0 j  =  1 , … ncon (4-2)

hk ( v )  =  0.0 k  =  1 , … ne (4-3)

vi
lower    ≤  vi  ≤  vi

upper i  =  1 , … ndv (4-4)

where g specifies the ncon inequality constraints and h refers to the ne equality constraints. Equation 4-4
specifies upper and lower bounds (side constraints) on each of the design variables. Section 4.2 provides
the physical interpretations of each of these quantities as they are applied in ASTROS.

Figure 4-1 presents a schematic diagram of the ASTROS program flow for the design portion of the
procedure and contains a number of key concepts that need to be understood in order to appreciate the
generality and power of the procedure. The figure indicates that the task is divided into three phases. In
the first phase, an analysis of a specified design is performed. As the diagram shows, there can be any
number of boundary conditions included in this phase and each boundary condition can contain a number
of disciplines. Further, each discipline could contain a number of subcases. As an example, a typical
design task could be to analyze the structure for strength at a number of flight conditions (specified by
Mach Number, altitude and load factor) and also to evaluate the flutter behavior at another set of flight
conditions for both symmetric and antisymmetric response. It should be clear that each of these condi-
tions could contain a response that is critical in determining the design and that all critical conditions
must be considered simultaneously to achieve an overall best design. The inability of previous automated
design procedure to perform this simultaneous analysis has been seen as one of their primary weak-
nesses by potential users.
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Optimization Phase

Sensitivity Phase

Analysis Phase

Yes

No

Converged
or

Max Iteration

Select Active Constraints

For Each Active Boundary Condition Do

Active Discipline 1
Active Subcase 1 → Active Constraint Sensitivities
Active Subcase 2 → Active Constraint Sensitivities
......
......
Active Discipline 2
......
......

End Do

Re-Design Based on Current Objective, Active 
Constraints, Objective and Constraint Sensitivities

Stop

For Each Boundary Condition Do

Discipline 1
Subcase 1 → Constraints 
Subcase 2 → Constraints
......
......

Discipline 2
......
......

End Do

Figure 4-1. Multidisciplinary Optimization
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As Figure 4-1 shows, each of the subcases generates constraints that quantify the response of the design
relative to prescribed limits. In the second phase, the sensitivities of these constraints to changes in the
design variables are calculated. Note that this discussion of the sensitivity and the optimization phases
pertains only to the mathematical programming option for design. Section 13.2 discusses the alternative
Fully Stressed Design option.

Because of the potentially large number of constraints, a screening process takes place to select the
constraints that can be expected to play a role in the redesign (see Section 13.1). Two important points to
be made for the present discussion are that (1) the sensitivity calculations require a looping through the
same boundary condition, discipline and subcase hierarchy that was required in the analysis phase and
(2) it would be inefficient to calculate these sensitivities "on the fly" during the analysis phase, since only
a small percentage of the constraints require sensitivities and the identity of the "active" constraints
cannot be determined until all the constraints are known.

In the optimization phase, the information on the objective and the active constraints is assimilated into
a redesign algorithm so as to meet the requirements of Equations 4-1 through 4-4. Section 13.1 describes
how this information is utilized to the maximum practical degree so that the iterations through the
computationally expensive analysis and sensitivity phases are kept to a minimum. As a final point on
Figure 4-1, the convergence test for program termination entails an evaluation of whether the redesign is
making progress in meeting the requirements or if the maximum specified number of iterations have
been made. 

Equations 4-1 through 4-4 are general in the sense that they apply to any optimization task. The
following sections describe the meaning of each of these terms in the equations in ASTROS.

4.3.  Objective Function

The objective to be minimized may be structural weight, a synthetic function of the structural responses,
or characteristics of the finite element model. There are no equality constraints in ASTROS; therefore,
there is no need to further consider Equation 4-3. The remaining terms require substantially more
definition.

Synthetic functions are available in ASTROS to play the role of either the objective function or a
constraint function. Synthetic functions are formed as mathematical combinations of analytical re-
sponses, such as stresses and flutter roots, or model characteristics, such as weight and thickness.
Section 4.6 presents the manner in which synthetic functions are introduced into the optimization
process.

4.4.  Design Variables

ASTROS defines design variables at two levels: (1) Physical (or local) variables, and (2) Global Variables.
The basic rationale for having these two levels is to reduce the number of design variables to a number
that is tractable in a mathematical programming context. As will be discussed, a further motivating
factor is that it provides the user with a means of imposing constraints on the design task that are
desirable due to manufacturing or other considerations. This is not a new concept; for example Reference
6 provides a discussion and review of techniques for reducing the number of design variables.
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4.4.1. Local Variables

These variables are properties of the finite elements used in ASTROS. Table 4-1 lists the finite element
types that can be designed and their associated design variables. 

Most of the physical design variables in ASTROS share a common property: their associated element
mass and stiffness matrices are a linear function of the design variable. This fact is exploited by comput-
ing the invariant portions of these matrices only once in the preface portion of the procedure. This portion
is then multiplied by the current value of the design variable during the assembly of the global stiffness
and mass matrices.

There are a number of exceptions to this linear behavior. The nonlinear behaviors fall into one of three
broad categories: (1) a design invariant property coupled with linear behavior, (2) the factorable BAR
element, and (3) fully nonlinear relationships. Each of these categories is treated differently as descibed
in the following.

Whenever an element has a set of properties that is design invariant and another set that is linear,
ASTROS creates a pseudo-element that contains the design invariant properties while the remaining
properties are factored as a linear design variable. In this manner, the benefits of linearity can still be
exploited. Examples of this category include the nonstructural mass of any element, the torsional stiff-
ness of the ROD element, and the inertia terms of a CONM2 element.

When a general one-dimensional bending element is designed, there are three possible means to define
the design variables and their relationship to the element properties: (1) use cross-sectional geomtric
parameters as design variables and derive the area, moments of inetia, and stress recovery points from
these parameters; (2) independently design the general properties; or (3) use a single design variable and
prescribe a relationship among the elemental properties and this variable.

ELEMENT DESIGN VARIABLE

CROD Area

CSHEAR Thickness 

CQDMEM Thickness(es)

CTRMEM Thickness(es)

CQUAD4 Membrane, bending, or composite layer thickness(es)

CTRIA3 Membrane, bending, or composite layer thickness(es)

CBAR Area, Cross-sectional parameters

CONM2 Mass

CELAS1,2 Stiffness

CMASS1,2 Mass

Table 4-1. Physical Design Variables

THEORETICAL MANUAL

ASTROS MULTIDISCIPLINARY ANALYSIS AND DESIGN 4-5



The third approach is used to allow linear factorization of the BAR element while retaining some
reasonable generality. In this approach, the inertial properties  (I1 and I2) are prescribed, exponential

functions of the area (A):

I1  =  r1 Aα

I2  =  r2 Aα (4-5)

Where r1, r2 and α are user defined quantities, and I12 , pin flags and other specialized BAR options are

disallowed. Further, the stress recovery points are assumed to be design invariant. This artificial con-

struct maintains linear factorization in A and Aα and does allow adequate modeling of common BAR
geometries ( α=1 corresponds to a thin walled beam while α=3 corresponds to a solid beam of constant
width and varying depth).

Therefore, it is entirely possible that the resultant optimal BAR is one that cannot be manufactured. To
eliminate this possibility, ASTROS designs BAR elements using the first method in which the design
variables are the actual cross-sectional geometric parameters. This is a fully nonlinear approach as
described next.

Whenever there is no factorable relationship between the stiffness or mass matrices and the inde-
pendent variables, ASTROS uses finite difference techniques to compute the elemental matrix sensi-
tivities and recomputes the exact elemental matrices at each new design point. Examples of this
approach include BAR cross-sectional design variables (CBAR,PBAR1) and plate bending elements.
For plate bending elements defined by shell properties (PSHELL), the relationship between the
properties and the independent variable, t, are merely scaled by the design variable. In other words,
for sandwich composites defined by PSHELL data, the design variable represents the smeared thick-
ness variable. For isotropic plates, this relationship is exact. For nonisotropic plates, use of a compos-
ite layup definition allows ASTROS to retain the correct relationship among the elemental properties
and the independent variables.

As a final point, references in Table 6 to thicknesses for the membrane elements refer to the fact that the
thickness of each ply direction for a composite element can be treated as a separate design variable. This
emulates the TSO (Reference 4) and FASTOP (Reference 5) treatments of composite materials.

4.4.2. Global Variables

These variables are the ones that are directly involved in the design process. The local variables are
linked to the global values through a matrix relationship of the form:

t  =  P v (4-6)

where t is a vector of nloc local variables, v is vector of ndv global variables and P is the linking matrix of
dimension nloc by ndv. Three linking options are provided in ASTROS.

4.4.2.1. Unique Linking

In this case, the global variables are the same as the local variables and there is a single nonzero term in
the corresponding row of the linking matrix and its value is the initial local property value.
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4.4.2.2. Physical Linking

One global variable uniquely specifies a number of local variables. This option is used to permit the
simultaneous variation of finite elements over a region of the structure, the rationale being that there is
no inherent reason why each finite element should be independently designed. There may be manufactur-
ing reasons why this linking should occur or it may be that the designer knows that uniform properties in
certain areas of the structures are adequate. The corresponding rows of the P matrix for the local
variables have a single nonzero term corresponding to the initial local property value.

4.4.2.3. Shape Function Linking

A local variable is the weighted sum of several global variables. In this case, the global variable controls
the magnitude of a shape function that applies over a region of the structure. The shape function concept
is best illustrated by reference to TSO’s representation of the skin thickness as being the weighted sum of
polynomials in the non-dimensional coordinates ξ and η of the trapezoidal wing box:

t (ξ,η)  =  ∑ 
i = 1

3

   ∑ 
j = 1

3

 aij  ξ
 i−1  η j−1 (4-7)

where the aij are the design variables. ASTROS has expanded this capability by allowing the user to

define any shape function over any part of the structure. For this third case, a row of the P matrix can
have any number of nonzero terms, and they can be either positive or negative. These factors are applied
to a unit local property value in computing the local variable.

4.4.2.4. Linking Example

Further perspective on these aspects can be obtained by referring to the simple model shown in Figure
4-2, which is the Intermediate Complexity Wing (ICW) used by Grumman in the development of the
FASTOP procedure. The model has 62 quadrilateral membrane elements that represent the upper and
lower skin surfaces. Each of these elements contains four layers of composite material. A number of
different linking concepts can be studied using the ASTROS procedure. In one, all the elements between
two ribs could be linked to give the same thickness, with different thicknesses allowed on the two
surfaces. This would result in 2 (surfaces) x 4 (layers) x 8 (bays) = 64 global design variables. Alterna-
tively, the user could allow the thickness to vary linearly in the spanwise direction while holding it
constant in the chordwise direction. This could provide a reasonable design that is also attractive from a
manufacturing standpoint. There would then be one global design variable for each surface that specifies
the level of a uniform distribution of the thickness while a second variable provides the linear taper. This
is equivalent to designating the a11 and a12 components of Equation 4-7 as design variables while setting

the remainder of the components to zero. This results in 2 (surfaces) x 4 (layers) x 2 (shapes) = 16 global
design variables.

It is recognized that the flexibility provided by these three options also places a burden on the users in
term of defining the design variables. Section 3.1 of the Applications manual discusses the preparation of
the bulk data inputs for these three options in some detail. Section 4.7 and 4.8 of the same manual
contain results from applying a variety of linking options to the ICW of Figure4-2. 
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4.5.  Constraints

Constraints in ASTROS are of three basic types: constraints on directly computed response quantities, as
given by Equation 4-2, constraints on linear or nonlinear functions of computed responses, also repre-
sented symbolically by Equation 4-2 and side constraints on the design variables, as given by Equation
4-4. The design variable options described in the previous section complicate the definition of side
constraints so that these constraints are included here in the discussion of thickness constraints. The
response constraints are divided into those that represent strength constraints and those that represent
stiffness constraints. The constraints are introduced in this section, with more detailed descriptions
deferred until the discussion of their associated disciplines in Sections 6, 7, 9, and 10.

4.5.1.  Strength Constraints

Four strength constraints are provided in ASTROS as described in the following sections.

4.5.1.1. Von Mises Stress Constraint

The Von Mises stress constraint in ASTROS is more properly viewed as the Tsai-Hill failure criteria,
which is the anisotropic extension of the Hencky-Von Mises criterion. This constraint on element stress is
written in the format of Equation 4-2 as:

g  =  






 




σx

Sx





2

  +  




σy

Sy





2

  −  
σx σy

SxSy
  +  





τxy

Fs





2

  







 
1
2

  − 1.0 (4-8)

NO. OF NODES

88

NO. OF ELEMENTS

39 RODS
55 SHEAR PANELS
62  QUADRILATERAL MEMBRANE
2 TRIANGULAR MEMBRANE
158 TOTAL

NO. OF DOF

294 RODS
234 SHEAR PANELS
528 TOTAL

Figure 4-2. Intermediate Complexity Wing Structure
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where x and y are the normal stresses in the element coordinate system and xy is the corresponding
transverse shear stress. Fs is a user defined limit for the shear stress while Sx  and Sy are allowables for

σx and σy that are derived from St and Sc , the tensile and compressive allowables, based on the sign of σx

and σy. For the special case of isotropic materials with St = Sc = S , the equivalent Hencky-Von Mises

criterion is obtained by using Fs = 
1

√3
 S . The tension and compression limits need not be the same so

that, in evaluating Equation 4-8, the sign of the normal stresses must be known before the appropriate
divisor can be selected.

4.5.1.2. Tsai-Wu Stress Constraint

This constraint on element stress is based on the Tsai-Wu failure criterion (Reference 8) which states
that a material will fail when

Fij σi σj + Fi σi  =  1.0 (4-9)

For the two-dimensional elements of ASTROS, this becomes:

F11σ12 + 2F12σ1σ2 + F22σ22 + F1σ1 + F2σ2 + F66τ 2
12  =  1.0 (4-10)

where symmetry considerations dictate that the F16, F26 and F36 terms are zero. The remaining
coefficient terms are:

F11  =  
1

xt xc

F22  =  
1

yt yc

F1  =  
1
xt

 − 
1
xc

F2  =  
1
yt

 − 
1
yc

F66  =  
1

s2

(4-11)

where x, y and s are allowables in the longitudinal, transverse and shear directions for a fiber and the t
and c subscripts refer to tension and compression. The F12 term is not defined analytically, instead it

must be provided by experiment for each material. There are, however, certain limits to the value that
F12 can take.

The Tsai-Wu criterion is utilized in ASTROS by determining the strength ratios, R, that the stress state
must be multiplied by to exactly satisfy Equation 4-10. This factor is determined by solving the quadratic
equation:

aR 2 + bR − 1.0  =  0.0 (4-12)
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where:

a  =  F11σ1
2 + F22σ2

2 + F66τ 12
 2  + 2F12σ1σ2

b  =  F1σ1 + F2σ2
(4-13)

By examination of Equation 4-12 we can obtain some idea about the size of F12. From Equation 4-12 we

obtain

R  =  
− b  ±√b2 + 4 a

2 a
(4-14)

where b, expanded, is

b  =  

 
1
xt

  −  
1
xc

 

 σ1  +  


 
1
yt

  −  
1
yc

 

 σ2 (4-15)

in which all the allowable values 

 xt, xc, yt, yc 

 are positive. If we assume that the tension and compres-

sion allowables are equal, b is identically zero. Therefore, for R to be defined as a real number, a must be
positive. This leads to a set of limits on F12 to ensure under all circumstances that R is defined:

−  
1

√ xt xc yt yc

  ≤  F12  ≤  
1

√ xt xc yt yc

(4-16)

This expression, however, is overly restrictive in the case where the tension and compression allowables

are different ( b ≠ 0 ). In that case the more general requirement that b2 + 4 a be positive applies instead
and F12 cannot be bounded without knowing the stress state. In ASTROS, the condition of Equation 4-16

is imposed during the input processing and results in a warning if not satisfied. Subsequently the general
requirement is, of course, imposed with fatal errors issued if the R value is not real.

The constraint is formed as

g  =  
1.0
R

 − 1.0 (4-17)
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4.5.1.3. Principal Strain Constraint

The implementation of a strain constraint in ASTROS is based on the two principal strains in a two-di-
mensional element:

εx  =  
1
2

  






 ε1  +  ε2  +  




 

ε1  −  ε2




2

  +  ε12
 2   





 1⁄2 






εy  =  
1
2

  






 ε1  +  ε2  −  




 

ε1  −  ε2




2

  +  ε12
 2   





 1⁄2 






(4-18)

Two constraints are computed per element based on the strains of Equation 4-18, with the evaluation
dependent on whether the user has specified a single strain limit or if separate tension and compression
(ε T

 and ε c) allowables are specified. 

If ε c  =  0, the constraints are calculated using

g1  =  
εx

εall
  − 1.0

g2  =  
εy

εall
  − 1.0

(4-19)

If ε c is nonzero, similar formulas are used, with the selection of ε all based on the sign of the computed

strains. For example, if εy is negative, then

g2  =  
|εy|

|εc|
  − 1.0 (4-20)

4.5.1.4. Fiber/Transverse Strain Constraint

The implementation of a fiber and transverse strain constraint in ASTROS is based on the strains along
the material axis and transverse to it. Each layer of a composite element can have different values of
fiber and transverse strain, even in the absence of bending effects.

One or two constraints are computed per element per layer based on the strains computed in a coordinate
system aligned with the fiber direction of the layer. Constraints are computed if the appropriate allow-
able has been specified. Computation of the constraint is identical to Equation 4-19, except that the
strain components are those in the fiber/transverse axes. Again, if separate tension and compression (εf

 T

,

εt
 T

 and εf
 c
,εt

 c
) allowables are specified, the appropriate allowable is used.
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4.5.2. Stiffness Constraints

A number of the constraints imposed in ASTROS can be thought of as placing limits on the structural
stiffness. Although inertia properties will play a role in some of these constraints, it is still a convenient
distinction, with displacement, frequency, flutter and static aeroelastic conditions the available stiffness
constraints in ASTROS.

4.5.2.1. Displacement Constraints

Displacement constraints are either upper bound:

∑ 
j = 1

ndisp

 Aijuj  ≤  δi
all

(4-21)

or lower bound:

∑ 
j = 1

ndisp

 Aijuj  ≥  δi
all

(4-22)

where the Aij are user specified weighting factors on structural displacement and δi is the user specified

limit. Note that the summation permits the specification of limits on the shape of a deformation. For
example, the twist of a wing tip could be limited by differencing the displacements at the leading and
trailing edges of the structural torque box:

( wLE − wTE )

cTIP
  ≤  0.04 radians (4-23)

where cTIP  is the chord distance between two displacements.

4.5.2.2. Frequency Constraints

Limits on the natural frequencies of the structure can be specified as

flow  ≤  fi  ≤  fhigh (4-24)

where fi is the computed value of the ith natural frequency and flow and fhigh are user specified limits on

this frequency. Note that formulation permits the specification that a frequency be within a certain band,
but it does not allow the exclusion of a frequency from a range:

fi  <  flow or fi  >  fhigh for flow  <  fhigh (4-25)

The difficulty is that ASTROS does not permit the “or” type of specification. Furthermore, if the fre-
quency did lie in the excluded zone, it is not easy to specify a redesign algorithm that could determine
whether it is better to drive the frequency up or down.
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To improve the accuracy of the approximations used in the optimization process, ASTROS imposes the
frequency constraint on the equivalent eigenvalue, i.e:

fi  ≤  fhigh    =>    g  =  1  −  
4 π2 f high

2

λi
  and  flow  ≤  fi    =>    g  =  

4 π2 f low
2

λi
  −  1

4.5.2.3. Flutter Constraint

The flutter constraint in ASTROS is formulated in terms of satisfying requirements on the modal
damping values at a series of user specified velocities:

γij  ≤  γj REQ             j = 1, 2 … nvel (4-26)

where γj REQ is the required level of damping at the j th velocity and γij is the computed damping level for

the  i th branch at the j th velocity. A further discussion of this constraint is given in Section 10.3,
following the development of the flutter equations. A point to be made here is that the constraint
formulation of Equation 4-26 does not require the determination of the flutter speed.

4.5.2.4. Lift Effectiveness Constraint

The lift effectiveness constraint places bounds on the ratio of the flexible to rigid lift curve slope of the
aircraft:

εmin  ≤  

CLα
f

CL
α

r

  ≤  εmax (4-27)

where CLα
f

 is the flexible lift curve slope and includes the effects of aeroelastic deformation and inertia

relief. CLα
r

  is the lift curve slope for the rigid aircraft. This constraint gives the user a direct and

physically meaningful way of controlling the amount of flexibility in the structure.

4.5.2.5. Aileron Effectiveness Constraint

Roll performance requirements frequently drive the design of aircraft wing structures. This factor has
been recognized in ASTROS by the incorporation of an aileron effectiveness constraint. Aileron effective-
ness, following terminology used in Reference 9 can be defined as the ratio of roll due to aileron deflection
over roll due to roll rate:

εeff  =  − 




Cl

δ
a





 f




Clpb

2V




 f

(4-28)
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where

Cl  =  Rolling moment about the aircraft center line

δa  =  Aileron deflection

pb
2V

  =  Roll rate nondimensionalized by wing span and aircraft velocity

f  =  Flexibility effects are included in the derivatives

The effectiveness parameter can be thought of as a measure of the steady roll rate achievable for a unit
value of aileron deflection. In a manner similar to the lift effectiveness, the user can specify that the
aileron effectiveness be within a specified range:

εmin  ≤  εeff  ≤  εmax (4-29)

An intriguing application of this constraint is its application to specify a reversed aileron. In this case the
effectiveness limits would be negative and active controls would typically be necessary to augment the
aircraft performance.

4.5.2.6. Flexible Stability Derivative Constraint

A more general constraint on the stability derivatives is also available that allows the flexible derivative
in any axis for any trim parameter to be constrained using:





∂CF

∂δ trim



 lower

 ≤   
∂CF

∂δ trim
   ≤ 





∂CF

∂δ trim



 upper

(4-30)

4.5.2.7. Trim Parameter Constraint

A final constraint that can be applied in the aeroelastic domain is one that allows limits on the values of
the computed trim parameters, e.g., angle-of-attack or control surface deflection. These constraints have
very limited application, but may be useful in controlling the optimization process when it moves the
design to a point in which the linear aerodynamics are no longer valid. For example, if the "optimal
solution" has a 60 degree aileron deflection, the aerodynamics of ASTROS are no longer valid. It may be
possible that a constraint on aileron deflection will yield a more useful design.

The constraints that can be applied are of the form:

δtrim ≤ δtrimReq
   or   δtrim ≥ δtrimReq

(4-31)

and can be applied to any FREE trim parameter in any static aeroelastic analysis.

4.5.3. Buckling Optimization — The Unstiffened Plate

A capability has been implemented which allows a panel buckling constraint to be specified in ASTROS.
The full capability allows modeling of stiffened panels by considering the plate bending behavior and the
stiffener behavior independently but simultaneously. Thus there is an unstiffened panel buckling con-
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straint driven by plate bending elements and an Euler buckling constraint driven by one-dimensional
bending elements. This section outlines the theoretical development for the simply supported option of
the plate buckling constraint and describes the manner in which it is used.

Consider the panel shown in Figure 4-3. The panel, which is simply supported on all four sides, has
dimensions a  and  b. The running loads are shown as Nx , Ny , and  S. Laminate bending stiffness is

represented as Dij :    i  =  1,...,6; j = 1,...6. The governing differential equation for the plate is:

D11 
∂4w

∂x4   +  4 D16 
∂4w

∂x3 ∂y
  +  2 ( D12 + 2 D66 ) 

∂4w

∂x2∂y2  +  4 D26 
∂4w

∂x ∂y3  +  D22 
∂4w

∂y4

         =  Nx 
∂2w

∂x2   +  Ny 
∂2w

∂y2   +  2 S 
∂2w

∂x ∂y

(4-32)

with boundary conditions:

at  x  =  0 , a

          w  =  Mx  =  − D11 
∂2w

∂x2   −  2 D16 
∂2w

∂x ∂y
  −  D12 

∂2w

∂y2   =  0
(4-33)

at  y  =  0 , b

          w  =  My  =  − D12 
∂2w

∂x2   −  2 D26 
∂2w

∂x ∂y
  −  D22 

∂2w

∂y2   =  0
(4-34)

In many circumstances, Galerkin’s method can be used to solve such equations by selecting a series of
functions, each of which satisfy the boundary conditions, and then determining the coefficients in the

x

y

Nx

Ny

S

a

b

Figure 4-3. Buckling Panel
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series by requiring that the solution be orthogonal to each term in the series. Unfortunately, there is no
such series which satisfies these boundary conditions.

As a result, boundary integrals must be included in the formulation of the Galerkin equation. The double
sine series:

w  =  ∑ 
m  =  1

M

      ∑ 
n  =  1

N

  Amn sin 
mπ
a

 x sin 
nπ
b

 y (4-35)

satisfies the geometrical condition w  =  0 on the boundary. Noting that on the boundary:

∂2w

∂x2   =  
∂2w

∂y2   =  0 (4-36)

for the series in (4-35), the Galerkin equation may be written as:

∫    ∫   



D11 

∂4w

∂x4   +  4 D16 
∂4w

∂x3 ∂y
  +  2 ( D12 + 2 D66 ) 

∂4w

∂x2∂y2  +  4 D26 
∂4w

∂x ∂y3 o

 a

 o

 b

       



  +  D22 

∂4w

∂y4   −  Nx 
∂2w

∂x2   −  Ny 
∂2w

∂y2   −  2 S 
∂2w

∂x ∂y
 



  sin 

mπx
a

  sin 
nπy
b

  dx dy

          −  2 D26  ∫  
 o

 a
 



 −1n 





 ∂2w
 ∂x∂y

 



y  =  b

  −  




 ∂2w
 ∂x∂y

 



y  =  o




  

n π
b

 sin 
mπx

a
 dx

          −  2 D16  ∫  
 o

 b
 



 −1m 





 ∂2w
 ∂x∂y

 



x  =  a

  −  




 ∂2w
 ∂x∂y

 



x  =  o




  

m π
a

 sin 
nπy
b

 dy

          =  0    




  m  =  1,2,...,M
  n  =  1,2,...,N

(4-37)

Substituting (4-35) into (4-37) and integrating yields the algebraic equations:

π4  



 D11 m4  +  2 ( D12 + 2 D66 ) m2 n2 R2  +  D22 n4 R4  −  Nx 

m2 a2

π2   −  Ny 
n2 b2

π2  R4 



 Amn

        − 32 m n R2 π2  ∑ 
i  =  1

M

    ∑ 
j  =  1

N

 Mij  



 ( m2 + i2 ) D16  +  ( n2 + j2 ) D26  −  

S

R
 
a2

π2 



 Aij  =  0

(4-38)

where:
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Mij  =  0
ij

( m2 − i2 ) ( n2 − j2 )
     





 m ± i
 n ± j

   
 =  odd
 =  odd

Mij  =  0
ij

( m2 − i2 ) ( n2 − j2 )
     





 i  =  m , m ± i
 j  =  n , n ± j

   
 =  even
 =  even

(4-39)

and R  =  a ⁄ b. Equation (4-38) results in a set of M × N homogeneous equations. To obtain other than the
trivial solution, Amn  ≡  0, the determinant of the coefficient matrix must vanish. This introduces the

buckling eigenvalue problem that is solved. Before moving to the solution for the buckling eigenvalue,
reconsider (4-38). Equation (4-38) may be rewritten as:

pk ( m,n ) Amn  +  ∑ 
i  =  1

M

     ∑ 
j  =  1

N

   qij
k ( m,n ) Aij  =  λ 







 pq ( m,n ) Amn  +  ∑ 

i  =  1

M

     ∑ 
j  =  1

N

   qij
q (m,n ) Aij 







 (4-40)

where:

pk ( m,n )   =  π4  

 D11 m4  +  2 ( D12 + 2 D66 ) m2 n2 R2  +  D22 n4 R4 



qij
k ( m,n )   =  − 32 m n R2 π2  Mij  



 ( m2 + i2 ) D16  +  ( n2 + j2 ) D26 



pq ( m,n )   =  Nx m
2 a2 π2  +  Ny n

2 b2 π2 R4

qij
q ( m,n )   =  − 32 m n R  Mij S a2

(4-41)

Alternatively, (4-40) may be expressed in matrix form as:

K Φ  =  λ KG Φ (4-42)

where:

ΦT  =  




 A11,A12,…,A1N , A21,A22,…,A2N , AM1,AM2,…,AMN 






 ϕ1,ϕ2,…,ϕM×N 




and the subscript of Aij  →  ϕk satisfies:

k  =  ( i − 1 ) N  +  j ;   i  =  1,...,M ;  j  =  1,...,N (4-43)

Equation (4-40) represents the eigenvalue problem which must be solved to obtain the multiplier λ on the
panel running loads that result in buckling. There are M × N eigenvalues that can be extracted and the
lowest in absolute value represents the critical buckling mode. In the ASTROS implementation, only the
lowest eigenvalue for a given panel will be constrained.
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In order to obtain a solution to (4-40) for the buckling eigenvalues, the running loads Nx ,Ny ,and  S and

the values of Dij, M, N, a and b must be obtained. The running loads and material properties are derived

from a finite element selected by the user. These data are then applied to a pseudo-panel whose dimen-
sions are supplied by the user. M and N are selected during the analysis to provide a reasonable
combination of numerical accuracy and computational cost.

Given the critical eigenvalue from (4-40), one can relate the critical running load to the eigenvalue:

Nc  =  ( Ncx
2   +  Ncy

2   +  Sc
2 )

1⁄2  =  λ ( Nx
2  +  Ny

2  +  S2 )
1⁄2  =  λ N (4-44)

then the constraints that can be imposed are that

g  =  




 λall

λ
 




 1⁄3

 −  1.0  <  0.0    (lower bound) (4-45)

and

g  =  1.0  −  




 λall

 λ
 




 1⁄3

  <  0.0 (upper bound) (4-46)

and sensitivity analysis can be performed under the assumption that the running load at the current
eigenvalue is a constant. The cube root is used to help improve the linear approximations used during the
optimization.

4.5.3.1. Sensitivity Analysis

Constraint sensitivities are computed in a straight-forward manner. Taking the derivative of the upper
bound constraint as an example:

∂g

∂v
  =  

λall

3 λ2 




λall

λ





 − 2⁄3

 
∂λ

∂v
  =  

( 1 − g )
3 λ

 
∂λ
∂v

(4-47)

∂λ

∂v
  =  

∂λ

∂Dij
  

∂Dij

∂tl
  

∂tl
∂v

(4-48)

where 
∂tl
∂v

 comes from the design variable linking matrix P. To obtain 
∂λ

∂Dij
, (4-42) is differentiated

analytically with the assumption that N is invariant for the current design step:

∂λ
∂Dij

  =  

 Φt  




∂K
∂Dij

 



 Φ

 Φt  KG Φ
(4-49)
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where the term 
∂K

∂Dij
 is either obtained analytically from (4-41) or by using finite difference methods. The

final term, 
∂Dij

∂tl
, which will accommodate both composite and non-composite materials, will always be

computed by central difference methods, since it is relatively inexpensive and will only be computed for
active buckling constraints.

4.5.4. Buckling Optimization — The Column

The derivation of the buckling equations for columns is straight-forward. It is based on the simple Euler
formula for allowable compressive force for thin walled tubular members:

Pcr  =  
π2 E I

L2 (4-50)

where I is the bending moment of inertia, A the cross-sectional area, and L the length of the column. The
bucking load is then defined as:

λ  =  
P

Pcr
(4-51)

4.5.4.1. Sensitivity Analysis

The design constraints on the buckling load factor are then written as:

glower  =  
λreq

λ
 − 1.0  ≤  0.0 (4-52a)

gupper  =  1.0 − 
λreq

λ
  ≤  0.0 (4-52b)

where λreq is the desired ratio of the load to the critical load load. Equation (4-50) is valid for a single

boundary condition: pinned-pinned. There are four boundary conditions which must be considered as
illustrated in Figure 4-4.
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A summary of the critical load equations for each of these conditions is:

Pcr  =  
π2 E I

L2  (Pinned-Pinned) (4-53a)

Pcr  =  
π2 E I

4 L2  (Fixed-Free) (4-53b)

Pcr  =  
2.05 π2 E I

L2  (Fixed-Pinned) (4-53c)

Pcr  =  
4 π2 E I

L2  (Fixed-Fixed) (4-53d)

4.5.5. Model Characteristic Constraints

The structural design task requires that limits be placed on the values over which the characteristics of
the finite element model can range. ASTROS makes provision for two such characteristics, weight and
thicknesses. In this discussion, these limits are generically identified as weight and thickness con-
straints, but the term also applies to limits on the total mass, cross-sectional areas and concentrated
mass variables listed in Table 6. 

Without these limits on thickness, the optimization algorithm could take the thickness to unrealistically
small (or even negative) values. Unrealistically large values (e.g., thicknesses greater than the available

Figure 4-4. Column Boundary Conditions
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wing depth) could also occur. Thickness constraints are specified in one of four ways, as specified in the
following paragraphs.

4.5.5.1. Weight

The weight or mass characteristic is typically the objective function in ASTROS. However, it may be used
as a constraint or as a constituent of a synthetic function, as well. Limits on this value allow the designer
to perform optimal trade studies in which the weight plays a secondary role, rather than the primary role
of the objective. For weight or mass to be used as a constraint, it must be used in a synthetic function.
Weight is always the ASTROS default objective function.

4.5.5.2. Side Constraints

For the unique and the regional linking options (options 1 and 2 of the Global Variables discussion of
Section 4.4.2), the global variables are explicitly constrained. Physical limits, manufacturing considera-
tions or limits specified by factors not considered in ASTROS (e.g. fatigue or buckling) can all contribute
to defining these constraints.

4.5.5.3. Thickness Constraints

When the shape function design variable linking option is used, side constraints on the global design
variables cannot be used. Move limits on the physical design variable (local variable) are instead applied
through the definition of thickness constraints. The value of the thickness constraint is determined by
the user specified move limit or by the true physical upper or lower bound gauge constraints. Section 3.2
of the Applications Manual discusses the use of the DCONTHK data entry to explicitly select elements
whose thickness constraints will always be retained in the design task. Note that the ASTROS procedure
automatically generates thickness constraints for all local design variables linked to shape functions.

4.5.5.4. Move Limits

The user should be aware of a third type of thickness constraint that is internal to the ASTROS
procedure. Approximation concepts (see Section 13.2) are based on the assumption that many response
quantities are a linear function of the design variables, or their inverse. In order to maintain the validity
of this approximation, limits are placed on how much a local design variable can change during a design
cycle. A MAPOL parameter controls these limits, with a halving or doubling of a thickness typically
permitted. These limits will be most pronounced when a user’s initial design is far from the optimum.
Progress toward the optimum may appear slow in these cases because the move limits are artificially
restricting the design.

4.5.5.5. Laminated Composite Constraints

Manufacturing constraints for composites have also been incorporated in ASTROS. A set of design
constraints handles the common composite manufacturing requirements that are applied during the
design of structures using composite laminates. These constraints are on the ply minimum gauge, lami-
nate minimum gauge and the percentage of the laminate that is made up of a ply. Together with the use
of design variable linking and side constraints on both the local and global design variables, these
constraints allow the user to ensure that the optimization process will generate a thickness distribution
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that is at least reasonably close to a manufacturable laminate. Of course, the restriction of a continuous
design variable approximation to the discrete layer thicknesses is still present.

The laminate composition constraints allow the specification of an upper or lower bound on the percent-
age of a laminate thickness that is composed of a particular ply thickness.

%req

100
  −  

tply

tlam
  ≤  0   (lower bound) (4-54a)

tply

tlam
  −  

%req

100
  ≤  0   (upper bound) (4-54b)

Similarly, the lower bound constraints on the ply and laminate minimum guages are given by:

1.0  −  
tlam

tmin
  ≤  0  (for laminate)  1.0  −  

tply

tmin
  ≤  0  (for ply) (4-55)

All these constraints share common definitions of the ply and the laminate, which are worthy of some
discussion. A ply consists of one or more layers whose summed thicknesses will constitute the ply
thickness. Similarly, a laminate is one or more layers whose summed thicknesses will constitute the
total laminate thickness. The principal difference between a ply and a laminate is that the defaults are
set up to allow simple input when a ply is a single layer and when a laminate consists of all layers.

The generality of the ply and the laminate definitions provides for the generality of the typical composite
composition constraints. For example, there are usually both lower and upper bound fractions of the
laminate thickness for each distinct fiber orientation. These orientations may be (and usually are)
separated into noncontiguous layers on the PCOMP entry. Therefore, the ply definition needs to be all
layers with the same orientation and not just a single layer. For sandwich composites with composite face
sheets, each face sheet independently has the manufacturing composition constraint imposed and the
core thickness and the other face sheet are not desired in the definition of the laminate thickness. All
these scenarios are accommodated in the ASTROS constraint definitions.

4.5.5.6. Thickness and Laminate Sensitivities

Thickness and laminate constraints are the only constraints in ASTROS that are direct functions of the
design variables. As indicated in Section 4.3, the local variable is an algebraic sum of the global variables,

so the j th thickness constraint can be written in terms of the global design variables as:

gk  =  1.0 − ∑ 
i=1

ndv

 Pij  
vi

tmin
  and  gk  =  1.0 − ∑ 

i=1

ndv

 Pij  
vi

tmin
 (4-56)

the sensitivity of this constraint to the j th design variable is then simply:

∂gk

∂vj
  =  − 

Pij

tmin
     and    

∂gk

∂vj
  =  + 

Pij

tmax
 (4-57)
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Similarly for laminate constraints, the design variable linking relationship is used to develop the sensi-
tivities of these constraints. For laminate minimum guage and maximum guage constraints the expres-
sion is identical to a maximum or minimum thickness — only the number of plies in the summation
causes a distinction. For laminate composition constraints, the expression can be derived by differentiat-
ing 4-54a:

%req

100
  −  

tply

tlam
  ≤  0   (4-58a)

∂g
∂vj

  =  

−  tlam  
∂tply

∂vj
  +  tply  

∂tlam

∂vj

tlam
2

(4-58b)

where:

∂tply

∂vj
  =  ∑ 

i

 Pij   and  i  ∈  { set of layers in the ply}

∂tlam

∂vj
  =  ∑ 

i

 Pij   and  i  ∈  { set of layers in the laminate}

A similar expression results for the upper bound.

4.6. SYNTHETIC FUNCTIONS IN OPTIMIZATION

ASTROS supports a general capability which allows the user to define an algebraic combination of
solution results to form a synthetic function. Such functions may play the role of the objective function,
or they may be used as design constraints during optimization. Functions may be defined using standard
arithmetic operators, trigonometric functions and logarithmic functions. They may also include intrinsic
functions which are used to retrieve responses and model characteristics from the ASTROS design and
analysis model.

The response intrinsics are functions that, when called with a set of parameters, or arguments, return
the value of the indicated analytical response or model characteristic. For example:

A = STRESS(100,SIGX,,1001)
B = THICK(2001,7)

returns the σx component of stress for element 100, case 1001 into A and the thickness of the seventh

layer of element 2001 into B. In general, the synthetic constraint or objective function may be defined as:

as  =  h ( r1 , r2 , … , rn ) (4-59)

where:
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as is the synthetic function value

h is some set of algebraic operators

ri are responses of the finite element analysis and/or model characteristics

In ASTROS, as is always a scalar function, and each of the operators, h, eventually operates on a scalar

response, ri .

When as is used as the objective function, there are no special requirements other than that as be a once

differentiable function of the design variables. When as is used as a constraint function, the additional

requirement that as  ≤  0 indicate feasibility — or satisfaction of the constraint — is imposed.

Given that as is used in either role in the optimization process, the derivative of as with respect to the

design variables is required. To obtain this derivative, ASTROS uses the chain rule:

∂as

∂vj
  =  h

__
 ( r1 , 

∂r1

∂vj
 , r2 , 

∂r2

∂vj
 , … , rn , 

∂rn

∂vj
 ) (4-60)

The function h
__

 is determined by the symbolic differentiation of h. The user does not need to describe h
__

to ASTROS.

The intrinsic functions available in ASTROS are quantities such as stress, strain and displacement —
the same quantities that are used in the assembly of other constraint and objective functions. The
derivatives of these responses, which are used to compute the sensitivities of the synthetic functions, are
presented in subsequent sections of this manual with the analytical disciplines that generate the associ-
ated response.

4.7.  SENSITIVITY ANALYSIS

Mathematical programming approaches to the solution of Equations 4-1 through 4-4 typically require the
gradients of the objective and the constraints with respect to the design variables. That is:

∂F
∂vi

    i  =  1, … ndv

∂gj

∂vi
    j  =  1, … ncon;  i  =  1, … ndv

(4-61)

Previous procedures similar to ASTROS have used one of two approaches to supply these gradients: (1)
finite difference analyses and (2) analytical analyses. The first approach calculates the gradients by
making a perturbation in the design variable, reanalyzing the problem and computing the gradients
based on:

∂gj

∂vi
  =  

gj 
 vi + ∆ vi 

 − g 

vi

∆ vi

(4-62)
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The TSO procedure of Reference 4 uses this technique. Finite difference calculations become burdensome
when there are large numbers of design variables and constraints, so a significant effort was expended in
the ASTROS procedure to provide analytical gradient information. 

The constraint and objective function gradients are computed by differentiation of the equations of
motion for the particular analysis discipline and constraint (or objective). These equations are described
with their associated constraint functions in Sections 6, 7, 9, and 10; but, they all eventually rely on the
existence of the first order gradients of the elemental matrices with respect to the physical (or local)
design variable. 

Local design variables in ASTROS are quantities like element thickness (for 2-D elements), and cross-
sectional areas of 1-D elements. An analytic gradient of the elemental matrices is possible for some
combinations of elements, constraints and local design variables. Under these circumstances, ASTROS
uses this purely analytical approach, since it is computationally efficient. When the combination of design
variable and elemental properties result in a nonlinear relationship, ASTROS uses finite difference
methods to compute the elemental matrix derivatives. These derivatives are then used in the analytical
expression for the constraint or objective function gradient. This approach is called a Semi-Analytical
method for constraint gradient computation.

4.7.1.  Linear Design Variables

The term linear design variable is used to denote a combination of local design variable and elemental
properties that yield a factorable, linear relationship among the design variable and the elemental
matrices. For example, a rod element with no torsional stiffness, no nonstructural mass with a cross-sec-
tional area design variable, has a linear relationship between the area and the stiffness and between the
area and mass. When stress or strain constraints are applied in ASTROS, a further relationship is
needed: that between the stress or strain and the nodal displacements (refer to Section 5.3 for details).
This matrix is referred to as the S matrix. Again, ASTROS attempts to factorize the resultant matrices
whenever possible.

The combination of these three elemental matrix quantities, mass, stiffness and stress/displacement
determine whether a design variable is linear for that element. For linear design variables, the trio of
design invariant elemental matrix factors are computed once. Matrix assembly and sensitivity analysis is
then performed using these factors.

4.7.2.  Nonlinear Design Variables

The term nonlinear design variable is used to denote a combination of local design variable and
elemental properties that does not yield a factorable relationship among the design variable and the
elemental matrices. For example, a plate bending element has no factorable relationship between thick-
ness and stiffness.

For nonlinear design variables, the trio of elemental matrices must be recomputed at each new design
point. Also, since no analytical gradient for these matrices is readily available, ASTROS uses finite
difference methods (at the elemental level) to compute the approximate first derivative of these elemental
matrices with respect to each of the local design variables connected to the finite element. This is subtly
different than in the linear case, where the factored matrices can play a role in matrix assembly and
sensitivity analysis. For the nonlinear case, separate matrices are needed for assembly of the global
matrix and for sensitivity analysis AND both sets of matrices must be recomputed at each new design
point.
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For example, considering a single local design variable, t; the elemental stiffness, mass and S matrices
are computed for the current value of the local design parameter, tn. Then, the derivative of the elemental

matrices can be formed by finite difference:








∂Kee

∂ti








n

  =  



Kee


n

 ( ti + ∆ ti ) n  −  

Kee


n

∆ t i
(4-63a)
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(4-63b)
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∂ti







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  =  



S

n
 ( ti + ∆ ti ) n  −  


S

n

∆ t i
(4-63c)

In ASTROS, the updated matrices and finite difference sensitivities are only computed for nonlinear
designed elements. These data are combined with design invariant and linear designed elements to
assemble both the updated global matrices and the updated first order gradient matrices.

K gg  =  A  k fixed
ee   +  A    ∑

j
  ∑ 

i

   pij k fact
i  vj  +  A  k nl

ee (4-64a)

M gg  =  A  m fixed
ee   +  A    ∑

j
  ∑ 

i

   pij m fact
i  vj  +  A  m nl

ee (4-64b)

S  =  A  s fixed  +  A  s nl (4-64c)

∂K gg

∂vj
  =  A    ∑ 

i

   pij k fact
i   +  A    ∑ 

i

   pij  
∂k ee

∂ti
(4-64d)

∂M gg

∂vj
  =  A    ∑ 

i

   pij m fact
i   +  A    ∑ 

i

   pij  
∂m ee

∂ti
(4-64e)

∂S
∂vj

  =  A    ∑ 
i

   pij  
∂s ee

∂ti
(4-64f)

where the global matrix is assembled from the combination of 1) design invariant elemental matrices, 2)
elemental matrices that represent factorized "derivatives" and 3) recomputed elemental matrices. The
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global matrix sensitivities are assembled from 1) the factorized linear derivatives and 2) the finite
difference derivatives for nonlinear design variables. Note that Equation 4-6 has been used to account for
linking during the assembly process. This is actually what occurs in ASTROS, since the finite difference
takes place on the local design variable.

To simplify the remainder of this manual, the effects of nonlinear design variables will be embedded in
the first order sensitivity matrices and the global matrices. Unless specifically required in context, no
further distinctions will be made in first order gradient computations for linear and nonlinear design
variables.
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Chapter 5.

FINITE ELEMENT MODELING

This section provides a description of the finite elements available in ASTROS and the algorithms used to
assemble the individual elements into global mass and stiffness matrices. Emphasis is placed on the
design aspects of this modeling. Section 5 of Reference 1 and Section 8 of Reference 2 contain thorough
discussions of the elements used in ASTROS. An exception to this is a complete description of the QUAD4
element in Appendix A. This element was developed specifically for the ASTROS program and therefore
requires detailed documentation.

5.1. FINITE ELEMENTS

A limited set of elements have been implemented in ASTROS. The selection of the elements was based
primarily on past experience in the modeling of aerospace structures. Another consideration was the
selection of elements that lend themselves to an automated design task. The discussion which follows
divides the elements into seven categories: 

Concentrated mass elements

Scalar elements

One-dimensional elements

Two-dimensional elements

Three-dimensional elements

The General element

Rigid elements

The discussion in this subsection is primarily devoted to the formation of the element stiffness and mass
matrices and the thermal load sensitivity vectors (referred to below as the thermal vectors). Subsection

THEORETICAL MANUAL

ASTROS FINITE ELEMENT MODELING 5-1



5.2 contains a discussion of the calculation of stress and strain constraints for the ASTROS’ elements
while Subsection 7.2.1 of the User’s Manual discusses the output that is available for each of the
elements.

5.1.1. Concentrated Mass Elements

These elements allow for the definition of mass properties without any associated stiffness. They are
useful for modeling the mass properties of a structure, which are typically defined by a separate group
from that used in the structural stiffness modeling. In the design context, these elements can be used by
the design to size tuning masses when frequency constraints are to be satisfied or as a mass balance
variable in a flutter design task.

ASTROS has provided two separate forms for specifying concentrated masses that have been adapted
from the CONM1 and CONM2 elements of NASTRAN. In the CONM1 form, the user inputs the top half of a
symmetric mass matrix at a geometric grid point. The bulk data entry for this element in the User’s
Manual completely defines its form. The element cannot be designed.

In the CONM2 form, the user inputs mass data about a center of gravity point that may be offset from a
geometric grid point. The mass matrix at the grid point is then calculated using:

m  =  m
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(5-1)

where x, y, and z are the offset distances from the mass to the associated grid point in a specified
coordinate system, m

__
 is the mass value and the Iij terms are inertias about the mass center of gravity.

The mass matrix of Equation 5-1 is in the input coordinate system. It may be necessary to make a
coordinate transformation to the global coordinate system. Equation 5-1 is written in the form it is to
stress the point that the design variable for ASTROS for this element is the m

__
 value and that the input

inertia terms remain unchanged when design is being performed. These design features give an element
mass matrix that is linear in the design variable if Iij = 0 or is separable into a constant term and linear

term.

There are no thermal effects or output recovery for these elements.

5.1.2. Scalar Elements

The scalar spring element and the scalar mass element, based on the CELAS and CMASS elements of
NASTRAN, are available in ASTROS. The element matrices for these items are

k  =  k
__
  





1
−1

  
−1
1
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(5-2)

and
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m  =  m
__

  




1
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−1
1
 




(5-3)

where m
__

 and k
__
 are user input values and the matrices are in relation to the two degrees of freedom

specified by the user. Both m
__

 and k
__
 can be design variables in ASTROS, although the physical meaning of

the scalar mass variable is not clear and its use appears limited. The spring variable can be used to
represent, for example, an actuator stiffness which could be included in the design process. Note that the
sensitivity of the weight to changes in the scalar spring design variable is zero. This presents no
particular difficulty, but it may result in a poorly posed problem if the user naively assumes that infinite
stiffness is achievable in a real-world situation for no penalty.

There are no thermal effects for these elements, nor are there any stress constraints in the design task.
The user can, however, impose displacement constraints which may emulate a stress constraint for the
scalar spring element.

5.1.3. One-Dimensional Elements

Two one-dimensional elements, the rod and the bar, have been implemented in ASTROS. These are
described in the following sections.

5.1.3.1.  The Rod Element

The rod element of Figure 5-1 has both extensional and torsional stiffness with an assumed linear
displacement field. This field gives rise to constant element stresses. The implementation of this element
has been based on that used for the CROD (or CONROD) element in NASTRAN. As the figure indicates, the
rod has two degrees of freedom at each node in its element coordinate system. After transformation to the
global coordinate system, this results in either a 6 x 6 or 12 x 12 element stiffness matrix, depending on
whether the user has specified only extensional or both torsional and extensional stiffness values. The
mass matrix is always 6 x 6 since only the translational degrees of freedom have inertia properties
associated with them. The user is given the option as to whether a lumped or a consistent formulation of
the mass matrix is to be used. The thermal vector is 6 x 1. 

The design variable for the rod element is its area.
Two modifications to the element matrix calculations
are made if the element is designed. The first is that
user input values of the torsional stiffness are used to
generate a separate, nondesigned pseudo-element that
has only the torsional stiffness. This is done because
there is no general relationship between the rod area
and the torsional stiffness. The second modification is
that user input values for the nonstructural mass are
used to generate a mass matrix for the pseudo-ele-
ment which has only the design invariant nonstructu-
ral mass. The nonstructural masses for all elements
are treated in a similar manner. This ensures that the
element mass matrix due to its volume is a linear
function of the design variable. 

Stress constraint calculations for designed rods in-
clude shear stresses since the torsional stiffness has
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Figure 5-1. The ROD Element
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been retained. The torsional stiffness, however, is not a function of the design variable (area) and so the
constraint may not be controlled by the design variables. If the user specifies stress constraints on an
element that is not designed and that has torsional stiffness, shear stresses are also included in the
constraint calculation.

5.1.3.2. The BAR Element

The bar element of Figure 5-2 includes extension, torsion and bending in two perpendicular planes with
associated transverse shear properties. The bar element has the following modeling features and limita-
tions, as given in Subsection 9.5 of Reference 14:

1. The neutral axis may be offset from the grid points.

2. The neutral axis and shear center coincide.

3. Pinned connections may be defined.

4. The area properties are constant.

5. The principal axes of inertia need not coincide with the local axes.

6. Stress can be recovered at four points on the cross section on each end.

Pinned connections allow the specification of degrees of freedom that cannot transfer force, thereby
creating a hinge. As Figure 5-2a indicates, six degrees of freedom are present at each node, resulting in a
12 x 12 element stiffness matrix. Rows and columns associated with pinned degrees of freedom are zeroed
out. The element mass matrix is also 12 x 12 and has off-diagonal terms if a consistent mass formulation
is used or if the beam is offset from the grid points. The thermal vector is 12 x 1 and thermal gradients
are neglected (i.e., the TEMPBR data entry of NASTRAN is not supported).  

Unlike the other ASTROS elements, the bar element may have either one design variable, its cross-sec-
tional area, or it may have several design variables which represent parameters in a family of standard
cross-sections. If the element is designed using a single variable, a number of restrictions are placed on
the modeling. As in the rod element, user specifications of nonstructural mass are used to spawn a design
invariant pseudo-element.

Using a Single Design Variable

When using a single design variable for the bar element, there is a fixed relationship between the
cross-sectional area and moments of inertia of the element. This was introduced in Equation 2-5 and is
repeated here:

I1  =  r1 Aα

I2  =  r2 Aα (4-5)

Implementation of the relationships of Equation 2-5 dictates that the total element stiffness matrix is
made up of a term that is linear in the cross sectional area and a second term that is this same area
raised to an exponential power:

K e  =  A  K e
E  +  Aα   K e

R (5-4)
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where the E and R superscripts refer to extensional and rotational stiffness terms, respectively.

When modeling the single design variable, the PBAR Bulk Data entry is used for defining the element
property and the inertia linking terms. In this case, input shear factors and cross products of inertia
values are set to zero. Neither the pin connection feature nor the offset feature is supported for a
designed beam.

Limitations imposed on designed bar elements are imposed on the stress computations for that element
as well. If, however, the user specifies stress constraints on an element that is not designed, the full finite
element capabilities are included in the stress computation.
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Figure 5-2. The BAR Element
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Using Cross-Sectional Design Variables

By using the PBAR1 Bulk Data entry, the user may select from a number of standard cross-sections as
shown in Figure 5-3. These sections are defined using from one to six geometric parameters, each of
which becomes a design variable. The user may then specify all appropriate side constraints on each
variable, and may link variables within the element. No limitations are imposed in the properties of a
designed bar when the PBAR1 Bulk Data entry is used. The matrix sensitivities are computed using finite
difference methods.

The four stresses computed at the nodes of the bar elements are axial stresses due to axial strain and
bending. Stresses are recovered at the locations specified in the element coordinate system which move in
relation to the design variables.

Figure 5-3. The PBAR1 Standard Sections
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5.1.4. Two-Dimensional Elements

Five two-dimensional elements are available in ASTROS: a quadrilateral shear element (SHEAR), a
triangular membrane element (TRMEM), a quadrilateral membrane element (QDMEM1), a quadrilateral
bending element (QUAD4), and a triangular bending element (TRIA3). The quadrilateral and triangular
bending elements are similar to the UAI/NASTRAN QUAD4 and TRIA3 elements. These are the prefered
modeling elements since their shear and membrane capabilities are equivalent to the SHEAR and
QDMEM1/TRMEM elements.

5.1.4.1. The Quadrilateral Shear Element

The shear element shown in Figure 5-4 is a two-dimensional quadrilateral element that resists only
in-plane shear forces. The element is defined relative to a mean plane parallel to the plane of the
diagonals and located midway between them. Garvey’s assumption that the shear flow distribution is
constrained to satisfy equilibrium conditions, with no requirement on strain compatibility, is used (See
Subsection 5.3 of Reference 1). This assumption is exact for rectangular elements and becomes more
approximate as the distortion from this rectangular
shape increases.  

Element stiffness and mass matrices of dimension 12
x 12 are generated for the translational degrees of
freedom. Only isotropic material properties are imple-
mented for this element and only a lumped formula-
tion of the mass matrix can be computed. No
temperature effects are included in this element.

The design variable for the shear panel is the element
thickness. If the element is designed, user specified
values of the nonstructural mass for the element are
used to generate a design invariant pseudo-element’s
mass matrix. Stress constraints for the shear element
are calculated based on the average of the shear
stresses at the four nodes.

5.1.4.2. The Triangular Membrane Element

The membrane element shown in Figure 5-5 is a two-
dimensional triangular element that resists only in-
plane forces and is equivalent to the TRMEM element in NASTRAN. The displacement field is assumed
to vary linearly in the coordinates of the element, giving rise to a constant strain state within the
element. Both isotropic and anisotropic materials can be analyzed, with the θ angle of Figure 5-5 used to
define the property axis for an anisotropic material.

Element stiffness and matrices are 9 x 9 for this triangular element. Only a lumped mass formulations of
the mass matrix is available. The thermal vector is of dimension 9 x 1, with the thermal loading taken to
be the average of the temperatures at the three element nodes.

The design variable for the triangular element is the element thickness. Separate design variables are
available for each ply direction if a composite material is being designed. This is consistent with the

Figure 5-4. The Quadrilateral Shear Element
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FASTOP formulation of Reference 5, which treats
all the plies within a laminate that are aligned in
the same direction as a "layer." In reality, of
course, ply layup ordering is of critical importance
and must be considered in the detailed design of a
composite part. If only membrane forces are being
considered, ply order effects do not matter and
the lumping of plies is permissible for analysis
purposes. Ply orientation angles are not available
as a design variable. However, there is no limit on
the number of ply directions that a user can spec-
ify and it is conjectured that if a user selects a
large number of directions (say six), a winnowing
process will take place and desirable orientation
directions will present themselves. If the element
is designed, user specified values of the nonstruc-
tural mass are used in the usual manner to gen-
erate a design invariant portion of the mass ma-
trix.

5.1.4.3. The Isoparametric Quadrilateral Membrane Element

The membrane element shown in Figure 5-6 is a two-dimensional quadrilateral element that resists only
in-plane forces and is equivalent to the QDMEM1 element in NASTRAN. The element has the following
properties, as discussed in Subsection 5.8.5 of Reference 1:

1. The stresses and strains vary within the element in an essentially linear manner.

2. The element may have a warped shape; i.e., the four nodes need not be co-planar.

3. Gaussian quadrature, with a 4 x 4 grid, is used to evaluate the stiffness matrix.

4. The temperature is assumed to be constant over the element, and is the average of
the nodal temperatures.

The "isoparametric" designation refers to the fact that the equation which relates the displacements at
any point in the element to the displacements at the nodes in terms of parametric coordinates (ξ , η) is
identical in form to the equation which relates the internal coordinates to the coordinates of the grid
points. Both isotropic and anisotropic materials can be accommodated by the element, with a material
axis defining the orientation of the anisotropic properties.   

The element grid points are mapped to a mean plane located midway between the diagonals of the
element, resulting in a planar quadrilateral. The 12 x 12 stiffness matrix is then derived for this
quadrilateral and then transformed to the physical grid points. The 12 x 12 mass matrix is calculated
using a lumped formulation. The thermal vector is of dimension 12 x 1.

The design variable for the quadrilateral element is the element thickness. Separate design variables are
available for each ply direction if a composite material is being designed. The comments on composite
design just discussed for the triangular element apply to this element as well. If the element is designed,

θ

Figure 5-5. The Triangular Membrane Element
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user specified values of the nonstructural mass
generate the appropriate design invariant por-
tion of the mass matrix.

5.1.4.4.  The Shell Elements

The QUAD4 and TRIA3 elements in ASTROS
are provided to allow for the inclusion of bend-
ing effects in quadrilateral and triangular ele-
ments and to give a general treatment of
composite materials. Appendix A provides a de-
tailed theoretical treatment of this develop-
ment, with an overview provided here. The
geometry of these elements is shown in Figures
5-7 and 5-8.

The formulation for these isoparametric ele-
ments incorporates a bilinear variation of ge-
ometry and deformation within the element. Both the QUAD4 and TRIA3 elements have 5 degrees of
freedom (DOF) per node, i.e., the stiffness for rotation about the normal to the mid-surface at each node
is not defined. Furthermore, it is assumed that plane sections remain plane and that the variation of
strains through the thickness is linear. Direct strain through the thickness is neglected (assumed to be
zero).

Both elements may be used to model either membrane or bending behavior, or both. Transverse shear
flexibility may be requested as well as the coupling of membrane and bending behaviors using nodal
offsets or linear variation of material properties through the thickness. In addition, the QUAD4 and
TRIA3 elements are capable of representing laminated composite materials, with an option to compute
interlaminar shear stresses and layer failure indices.

θ

Figure 5-6. The Quadrilateral Membrane Element

θ

Figure 5-7. The TRIA3 Element Geometry

θ

Figure 5-8. The QUAD4 Element Geometry
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The transverse shear stiffness is numerically conditioned to enhance the accuracy of the element for a
wide range of modeling practices including very thick or thin elements, high aspect ratio elements and
skewed elements. Numerical conditioning of the out-of-plane shear strains is discussed in Appendix A.

The elements provide lumped or, optionally, consistent mass matrices. The equivalent pressure and/or
thermal loads are also calculated. Thermal effects are accounted for in the element stress and force
recovery.

Design sensitivity matrices, constraints and gradients of constraints are computed for use in the struc-
tural optimization procedure. The element thickness or, for composites, individual layer thickness are the
design variables. When elemental properties are nonlinear in the design variables (such as when bending
properties exist), finite difference methods are used at the elemental level to compute the sensitivity of
stiffness, mass and stress, or strain/displacement matrices, to the design variable. In the latter quantity,
care is taken to account for any movement of the stress computation points during a change in the design
variable.

5.1.5. Solid Elements

Three isoparametric hexahedron solid elements have been implemented in ASTROS. These are the 8
noded IHEX1, the 20 noded IHEX2, and the 32 noded IHEX3. These three elements are essentially
identical to the COSMIC/NASTRAN elements of the same names (see Subsection 5.13 of Reference 1).
Typically, the IHEXi elements would be used to model geometrically complex thick-walled components.

Solid elements cannot be designed due to their not having any dimensional parameters such as thickness
or cross sectional area, which can be modified without violating inter-element compatibility. Neverthe-
less, these elements may still be utilized in optimization runs although they, themselves, will not be
designed.

The "isoparametric" designation follows from the fact that the same interpolating functions are used for
both the element geometry and the element deformation. The interpolating functions are either linear,
quadratic, or cubic, and are used to represent the IHEX1, IHEX2, and IHEX3 elements, respectively.
These functions are chosen so as to ensure interelement compatibility and to satisfy the constant-strain
convergence criteria.

The stiffness, mass and load equations for the IHEXi elements are derived using the principle of virtual
work. The equations are then evaluated by application of Gaussian Quadrature. The number of integra-
tion points used to evaluate the stiffness, mass and load matrices defaults to 2 x 2 x 2 for the linear
element, 3 x 3 x 3 for the quadratic element, and 4 x 4 x 4 for the cubic element. Optionally, other
integration mesh sizes may be specified. All computations are performed in the basic coordinate system,
and the resulting matrices are then transformed into the global coordinate system in preparation for the
element matrix assembly.

Element stresses, strains, and strain energies are calculated based on the displacements determined in
the global analysis of the structure. The stresses and strains are calculated in the basic coordinate
system at the eight corner points and at the center of the element. Stresses and strains are calculated
also at the center of each edge in the case of IHEX2 and IHEX3 elements. In addition, the principal
stresses and strains, principal direction cosines, and mean and octahedral stresses and strains are
computed at each of the above points.
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5.1.6. The General Element

The general element is a stiffness element connected to any number of degrees of freedom. It is most
often used to model nonstructural components such as servomechanisms for which laboratory testing has
provided stiffness or flexibility data. Two options are provided to define the characteristics of such an
element.

The first option requires specifying the deflection influence coefficients for the element when it is sup-
ported in a non-redundant manner. The associated matrix of the restrained rigid body motions may be
specified or it may be generated by ASTROS. The second option requires the stiffness matrix of the
element to be defined directly. This stiffness matrix may represent the unsupported body, containing all
the rigid body modes, or it may represent a portion of the degrees of freedom from which some or all of
the rigid body motions are deleted. In the latter case, an option is available to reintroduce the restrained
rigid body terms, providing that the original support conditions were not redundant. An important
advantage of this option is that, if the original support conditions restrain all rigid body motions, the
reduced stiffness matrix need not be specified to high precision in order to preserve the rigid body
properties of the element.

The force-displacement relationship for the general element, when written in the flexibility form, is:



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ui
fd
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
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
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



(5-5)

where Z is the matrix of deflection influence coefficients for coordinates ui when coordinates ud are

rigidly restrained. S is a rigid body matrix whose terms are the displacements ui due to unit motions of

the coordinates ud, when all fi = 0. fi are the forces applied to the element at the ui coordinates. fd are the

forces applied to the element at the ud coordinates. They are assumed to be statically related to the fi
forces, so that they constitute a non-redundant set of reactions for the element.

In terms of stiffness coefficients, this relationship is:
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(5-6)

where all symbols have the same meaning as above and k = Z −1, if k is nonsingular. It is permissible for
k to be singular.

No internal forces or other solution results are produced for the general element, and, while it can
participate in optimization models, it cannot be designed.

5.1.7. Rigid Elements

ASTROS provides you with five special rigid elements that may be used to conveniently model rigid body
structural connections and to define motions of points as an average of the motion of other points. Table
5-1 summarizes the Bulk Data entries that define these rigid connections. The discussions of the RROD,
RBAR, RBE1 and RBE2 are adopted from Section 3.5 of Ref. 1.
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5.1.7.1. The RROD Element

The RROD element represents a pin-ended connection between two grid points that is rigid in extension-
compression. Suppose A and B are two grid points connected by an RROD element and α1 , α2  and  α3

are the direction cosines, with respect to the basic coordinate system, of the line joining A and B. Then
since the distance between A and B remains unchanged, the following condition is satisfied for small
displacements:

( uA − uB ) α1 + ( vA − vB ) α2 + ( wA − wB ) α3  =  0 (5-7)

which may be written in matrix form as:

[ α1   α2   α3 ] 


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(5-8)

Equation 5-8 may then be rewitten to account for  the transformation to global coordinates as:
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
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(5-9)

Equation 5-9 is the single equation of constraint that represents the a rigid pin-ended connection be-
tween the grid points A and B. Note that only the three translational components of motion at each of the
two points are involved in this equation. Any one of the six translational components may be specified as
the dependent degree of freedom in a RROD element. The remaining five components are treated as
reference degrees of freedom.

5.1.7.2.  The RBAR and RBE2 Elements

The RBAR and RBE2 elements are similar in that they both involve a single reference grid point and one
or more dependent grid points. The RBAR element is the simpler. It defines a rigid connection in which

ELEMENT DESCRIPTION

RBAR
RBE1
RBE2

Define rigid connections between GRID points using different specifications of the
dependent DOF.

RBE3
Used to average the motions at a GRID point or to distribute loads among GRID
points.

RROD Defines a rigid extensional connection between two GRID points.

Table 5-1. Summary of ASTROS Rigid Elements
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up to six degrees of freedom of a single dependent grid point are coupled to six degrees of freedom of the
independent grid point. The RBE2 element is more general. It defines a rigid connection in which
selected degrees of freedom of the dependent grid points are coupled to all six degrees of freedom of the
independent point.

Consider a dependent grid point A that is rigidly coupled to grid point B by an RBAR element. For small
displacements, the motion uA at point A is related to that of point B, uB , by:
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 (5-10)

which may be written in the more compact form:

uA  =  GAB uB (5-11)

where GAB  is a 6x6 matrix. Each row of this matrix corresponds to a dependent degree of freedom of grid

point A, and each column corresponds to a reference dgree of freedom of grid point B. Each element of
this matrix represents a coefficient that corresponds to the coupling of a particular dependent degree of
freedom of A with a particular reference degree of freedom of B.

Equation 5-11 defines a set of six linear equations of constraint that mathematically represent the rigid
coupling of dependent grid point A to reference grid point B. In the case of an RBAR element, six
equations of motion are generated relating any arbitrary set of DOF from A and/or B, provided that they
fully describe the rigid body motion.

In the case of the RBE2 element, Equation 5-10 is assembled for a set of dependent grid points. The six
specified dependent DOF of these grid points form the rows of the relationship given in Equation 5-11
where uA  now represents degrees of freedom from multiple reference grids.

5.1.7.3. The RBE1 Element

The RBE1 element is the most general rigid element. It defines a rigid connection in which selected
degrees of freedom of the dependent grid points are coupled to six selected reference degrees of freedom.
The six reference degrees of freedom can be selected at one or more (up to six) reference grid points, but
they must, together, be capable of fully describing rigid body motion.

Let B be one of the reference grid points in a RBE1 element and let m be the total number of dependent
degrees of freedom specified on the element. Then, for small displacements, the m equations of constraint
may be expressed in terms of the motion of grid point B as defined in Equation 5-11. Note, however, that
in the case, as with the RBE2, the six degrees of freedom at grid point B will not typically all be the
required reference degrees of freedom. Using the user-defined set of dependent degrees of freedom,
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Equation 5-11 is assembled for all combinations. Then, the rows and columns associated with the speci-
fied degrees of freedom are used to assemble the constraint equations.

5.1.7.4. The RBE3 Element

The RBE3 element differs from the preceding true rigid elements in that it represents a distribution
element with zero or limited stiffness, rather than infinite stiffness (Reference 36). The formulation of the
RBE3 is performed by assuming the motions of the dependent degrees of freedom are a weighted average
of the motions that would result from rigid links to N independent degrees of freedom.

If we denote the six equations of rigid body motion in Equation 5-10 as:

uA  =  T A
T RAB TB uB (5-12)

Then, using a least squares fit of the relationships of the RBE3, one obtains:

uD  =  T D
T A −1   ∑ 

i = 1

N
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 wi ui (5-13)

where wi denotes a user-specified weighting matrix to alter the default curve fit and A is given by:
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
(5-14)

5.2. APPLIED LOADS

Three types of loads can be applied in a static analysis:

Mechanical or concentrated external loads

Gravity loads

Thermal loads

These load types may be applied separately or in combination. The last two load types have the potential
to vary with the structural design and this fact is recognized in the generation of these loads. Each of the
load types briefly discussed in the following sections.

5.2.1. Mechanical Loads

External loads are applied to the structural model in ASTROS through the use of input entries which
define forces, moments and pressure loadings. The forces are applied at specified grid points and in a
direction either defined explicitly in the input or by reference to two grid points which define a direction
along which the force acts. Similarly, moments are applied at specified grid points and in a direction
either defined explicitly in the input or by reference to two grid points which define an axis about which
the load is applied.
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Pressure loads are defined by specifying a pressure and an area over which it acts. The area is specified
by reference to three or four grid points. In the case of three grids, the area of the resulting triangle is
computed and the resulting force is distributed equally to the three grids. For the case of four grids, the
surface is defined by two sets of overlapping triangles, half the pressure is applied to each set and the
triangle algorithm is then applied. Input data descriptions for the FORCE, MOMENT, FORCE1, MO-
MENT1, and PLOAD Bulk Data entries in the ASTROS User’s Manual entries contain further information
on the preparation of this static loads data.

5.2.2. Gravity Loads

The gravity load is specified by a user defined acceleration and a direction. This acceleration vector is
then applied to each grid point’s translational degrees of freedom to obtain a global acceleration vector.
No rotational accelerations are applied. The gravity loads are then computed by multiplying the mass
matrix by this acceleration vector. Subsection 5.4 discusses the special treatment of gravity loads when
the mass matrix is a function of the design variables.

5.2.3. Thermal Loads

A basic capability to consider thermal effects has been implemented in ASTROS through the specification
of temperatures at grid points. For computing the thermal loads, this temperature is differenced from a
reference temperature that is specified by the user for each material that is used in the structure.

For each finite element, a thermal load sensitivity vector is generated, as discussed in Subsection 5.1. If
the element is designed, this vector is computed for the fixed value of the local design variable. Subsec-
tion 5.4 discusses the assembly of these thermal load components into a global load vector.

5.3. STRENGTH CONSTRAINTS

As discussed in Subsection 2.2.2.1, ASTROS supports four basic forms of element dependent strength
constraints

Von Mises failure criterion

Tsai-Wu failure criterion

Principal strain criterion

Fiber/transverse strain criterion

The structural element design constraints are shown in Table 5-2. The Tsai-Wu constraint is not avail-
able for the one-dimensional elements and the shear panel since these elements support only isotropic
material properties. The solid elements (IHEXi) may not be constrained in the design task and the stress
constraint for the scalar spring element is imposed as a displacement constraint. The principal strain
constraint generates two constraints for each element or composite laminate, one for each principal
strain value. All other constraints generate one constraint per finite element, layer of a composite
element, or stress computation point within an element.

Just as in the case of stiffness and mass matrices, it is desirable to compute the design invariant terms
useful in stress/strain computations in order to speed processing within the design iteration loops. In
ASTROS, this takes place in the EMG module in which the matrix S, that relates stress or strain
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components for each constrained element to the global displacements, is formed. (Note that it is not
necessary to design an element in order to impose a stress or strain constraint.) 

The S matrix is very similar to that formed in NASTRAN variants for the matrix method of stress
recovery in dynamic response analyses (see Subsection 4.7 of Reference 15). It is used both to evaluate
the strength constraints and to evaluate the constraint sensitivities to the global displacements according
to the following expression:

σ  =   S T  ug (5-15)

where σ represents the element stress or strain components which are then combined to compute the
particular strength constraint. 

The static stress or strain may be expressed as a function of the design variables and of the static
response (refer to Chapter 6 for the details):

σ  =  f (u, v)  (5-16)

The sensitivity of the j th stress component to a change in the i th design variable is given by:

∂ σj
∂vi

  =  
∂ fj
∂vi

  +  
∂fj

 T

∂u
   

∂u
∂vi

 (5-17)

For stress and strain constraints:

∂fj
 T

∂u
  =  S (5-18)

Thus, it is clear that S plays an important role in sensitivity analysis as well as constraint evaluation.
The computational efficiency that is gained by using the S terms in constraint evaluation and sensitivity
evaluation is that 1) S is computed only once for each constrained element and 2) for linearly linked
elements, S is design invariant and so only needs to be computed once. For nonlinear design variables,
computational efficiency is retained in that S is recomputed only for nonlinearly linked elements. The
first term in Equation 5-17, which is

ELEMENT ALLOWED STRENGTH CONSTRAINTS

BAR von Mises

QDMEM1 all forms

QUAD4 all forms

ROD von Mises, Principal Strain

SHEAR von Mises, Principal Strain

TRMEM all forms

TRIA3 all forms

Table 5-2. Structural Element Design Constraints
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∂S
∂vi

(5-19)

is also nonzero and must be computed by finite difference.

The following subsections present the details of the S calculations for each of the structural elements.

5.3.1. BAR Element

The bar element stress constraint matrix calculations are performed much like those in the standard
element data recovery as shown in Subsection 8.2 of Reference 3. The only difference is that the combina-
torial operations relating the element static forces to the stresses are performed on the matrices relating
the forces to the displacements rather than on the forces themselves. The 6 x 1 vector of element forces,
P, is related to the displacements by:

P  =  Sa  ua  +  Sb  ub (5-20)

where a and b denote ends A and B of the bar element, respectively. Merging this expression to avoid
distinguishing between nodal displacement vectors gives:

P  =  

 Sa | Sb 


   




 
ua
ub

 



  =  S ug (5-21)

The 6 x 12 matrix S is computed from the element stiffness matrix as shown in Reference 3. Note that
the effects of thermal loads are omitted from Equation 5-17. Unlike all other elements in ASTROS, the
stress contribution due to thermal loads is design dependent for the bar element. This feature of the bar
element is not supported in ASTROS for the linear linking option with the result that linearized design
optimization with constrained bar elements under thermal loads is inaccurate. The resultant stress
constraints and constraint sensitivities are self-consistent but neither account for the stress-free strain
arising from the thermal load. For nonlinear linking, these effects are handled correctly.

The bar element stresses are normally computed through combinations of the components of P, the user
input stress computation points C, D, E, and F, the moments of inertia, I1,  I2, and  I12, and the bar

element length. In order to form the S matrix, these linear combinations are instead performed on the

rows of the matrix S. Using the notation Si to denote the i th row of S, the S columns relating to the

stress components at ends A and B for the computation point defined by the user input points C1 and C2

are:

∂ σca
∂u

  =  
C1  I12  −  C2  I1

I1  I2  −  I12 2
  S5  +  

C1  I2  −  C2  I12

I1  I2  −  I12 2
  S6 (5-22)
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(5-23)

The remaining six stress components are computed in a similar manner.
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In evaluating the stress constraints, the columns of S are multiplied by the displacement vectors to
obtain the stress components. For the bar, each component then generates a single von Mises stress
constraint. It is important to note that each bar element generates eight stress constraints for every load
condition and that any coincident stress computation points will generate redundant constraints.

5.3.2. QDMEM1 Element

The isoparametric quadrilateral membrane element stress/strain constraint matrix calculations are per-
formed much like those in the standard element data recovery as shown in Subsection 8.19 of Reference
3. Four 3 x 3 matrices that relate stresses to the individual nodal displacements are computed as:

Si  =  GAB T E T 
 i

  Ti    ; i = 1, 2, 3, 4 (5-24)

where G is the 3 x 3 stress-strain matrix, A is the 3 x 8 strain-displacement matrix evaluated at the
intersection of the element diagonals, B is the 8 x 12 matrix relating nodal displacements to displace-
ments in the element mean plane, E is the 12 x 12 matrix relating nodal displacements in the basic
coordinate system to element coordinates, and T is the appropriate 3 x 3 transformation matrix from
basic to global coordinates. The subscript i in Equation 5-24 denotes the appropriate matrix or matrix

partition for the i th node. The three stress components for the QDMEM1 element may be computed
(neglecting thermal strains) from the matrices S
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which more clearly shows that S is formed directly from the rows of S if it is rewritten as:
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  =  S T ug (5-26)

The product of S and the global displacements yield, for the QDMEM1 element, the three stress compo-
nents in the element coordinate system. If thermal loads are applied, these components must be decre-
mented by the amount of stress arising from the thermal strains. This is accomplished by separately
storing the "thermal stress sensitivity" St vector for the element:

St  =  G α (5-27)

where α is the 3 x 1 vector of thermal expansion coefficients. This vector is then used in the stress
constraint evaluation to compute the actual stress components as:

THEORETICAL MANUAL

5-18 FINITE ELEMENT MODELING ASTROS













σx
σy
τxy 










 

TOT

  =  S T ug  −  St  


 T − To 




(5-28)

The stress components are then used to evaluate the von Mises or Tsai-Wu stress constraints. The
columns of S are also used to compute the stress constraint sensitivities. The thermal stress terms
contribute only to the constraint evaluation and not to the constraint sensitivity.

For principal strain constraints, the operations of Equations 5-24 through 5-26 are carried out in an
identical manner except that the stress-strain matrix G is omitted from Equation 5-24. This results in
the computation of the three strain components for the element rather than the stress components. There
is no correction required for thermal loads since the thermal strains are included in the calculation of the
constraint.

5.3.3. QUAD4 Element

The quadrilateral plate bending element stress/strain constraint matrix is formed from the stress-strain
and/or strain-displacement and the appropriate coordinate system transformation matrices presented in
Appendix A. The three components of stress or strain in the element coordinate system at the origin of
the element coordinate system at the user specified fiber distances are thus related to the nodal displace-
ments. These terms form the columns of the S matrix.

If thermal loads are applied, however, the stress components must be decremented by the amount of
stress arising from the thermal strains. This is accomplished by separately storing the "thermal stress
sensitivity" St vector for the element:

St  =  G α (5-29)

where α is the 3 x 1 vector of thermal expansion coefficients.

The stress or strain components can then be computed exactly as they are for the QDMEM1 element,
with the exception that there are two sets of components for each element (one for each fiber distance).
Those components are then used to evaluate the von Mises, Tsai-Wu or Principal Strain constraint.

For designed composite laminates, each ply is treated as a separate (membrane only) element with the
result that each layer is treated exactly like a QDMEM1 element. For other laminates, the stress or
strain constraint is applied to the element using the equivalent laminate properties and so is treated
exactly as are metallic QUAD4 elements.

5.3.4. ROD Element

The rod element stress/strain constraint matrix calculations are performed much like those in the stand-
ard element data recovery as shown in Subsection 8.27 of Reference 3. The two sets of 3 x 3 matrices
relating stresses to the individual nodal translations and rotations are computed exactly as shown in the
reference giving four matrices:

Sa
 t Stress-displacement matrix for translations at end A
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Sb
 t Stress-displacement matrix for translations at end B

Sa
 r Stress-displacement matrix for rotations at end A

Sb
 r Stress-displacement matrix for rotations at end B

The tensile and torsional stress constraint sensitivity components for the rod element are then formed as 

σMECH  =  

 Sa

 t  |  Sb
 t 


   










 
ua

 t

ub
 t 










(5-30)

τMECH  =  

 Sa

 r  |  Sb
 r 


   










 
ua

 r

ub
 r 










(5-31)

which show S to be formed directly from the rows of S. In the case of thermal loads, the tensile stress
values computed from the product of S and the global displacements must be decremented by the amount
of stress arising from the thermal strain. This is accomplished by separately storing the "thermal stress
sensitivity" St vector for the element:

St  =  α E (5-32)

where E   is the Young’s Modulus for the material and α   is the thermal expansion coefficient. This
vector is then used in the stress constraint evaluation to compute the actual stress component as:

σTOT  =  ST ug − α E ( T − To ) (5-33)

Both the tensile and torsional components are used to evaluate the von Mises stress constraints. The
columns of S are also used to compute the stress constraint sensitivities. The thermal stress terms
contribute only to the tensile stress component in the constraint evaluation and not to the constraint
sensitivity.

For principal strain constraints, the operations of Reference 3 that generate the S matrices are modified
to compute the strains rather than the stress components. The tensile and torsional strain components
are used to compute the two principal strain values with no correction for thermal loads since the
thermal strains are included in the calculation of the strain constraints.

5.3.5. SHEAR Panel

The shear panel stress/strain constraint matrix calculations are performed much like those in the stand-
ard element data recovery as shown in Subsection 8.3 of Reference 3. The average stress along the first
side of the shear panel is computed as:

SA  =  ∑ 
i = 1

4

  Si ug
 t (5-34)
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where the Si are the stress/strain displacement matrices for each node as shown in Reference 3 and ui
 t

are the nodal translations in global coordinates. From SA, the corner stresses are computed based on four

scalar coefficients Pi whose values are computed to account for parallelogram, trapezoid or general

quadrilateral geometries. The average shear stress or strain, which is used in ASTROS for the constraint
evaluation, is then computed as the average of the four corner stress/strain values. In order to compute
the S terms, the corner stress calculations and averaging operation were merged with the  SA computa-

tions to give:

σ  =  1
4

  






 
P2

P1

 + 
P1

P2

 + 
P1  P2

P3
 2  + 

P1  P2

P4
 2  







    S1 | S2 | S3 | S4 


   













 

u 1
u 2
u 3
u 4 

 













(5-35)

The product of S and the global displacements yield, for the SHEAR element, the average stress or strain
for the shear panel. The shear panel does not support any thermal strains so no corrections are needed to
the stress value. The average stress or strain is then used to evaluate the von Mises or Principal Strain
constraints.

5.3.6. TRMEM Element

The constant strain triangular membrane element stress/strain constraint matrix calculations are per-
formed much like those in the standard element data recovery as shown in Subsection 8.4 of Reference 3.
The three 3 x 3 matrices relating stresses to the individual nodal displacements are computed as:

Si  =  G Ci E
 T Ti   ; i = 1, 2, 3 (5-36)

where G is the 3 x 3 stress-strain matrix, C is the appropriate 3 x 2 strain-displacement matrix, E is the
3 x 2 matrix relating nodal displacements in the basic coordinate system to element coordinates, and T is
the appropriate 3 x 3 transformation matrix from basic to global coordinates. The subscript i in Equation

5-36 denotes the appropriate matrix or matrix partition for the i th node. The three stress components for
the TRMEM element may be computed (neglecting thermal strains) from the matrices Si as










 

σx
σy
τxy 

 










 MECH

   =  ∑ 
i = 1

3

  Si ugi (5-37)

which more clearly shows that S is formed directly from the rows of Si if it is rewritten as:











 σx
 σy
 τxy 










 MECH

   =   

 S1 | S2 | S3 


   










 

 u 1
 u 2
 u 3 

 










(5-38)
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The product of S and the global displacements yield, for the TRMEM element, the three stress compo-
nents in the element coordinate system. If thermal loads are applied, these components must be decre-
mented by the amount of stress arising from the thermal strains. This is accomplished by separately
storing the "thermal stress sensitivity" St vector for the element:

St  =  G α (5-39)

where α is the 3 x 1 vector of thermal expansion coefficients. This vector is then used in the stress
constraint evaluation to compute the actual stress components as:










 

σx
σy
τxy 

 










 TOT

  =  S T ug  −  St  
 T − To 

(5-40)

The stress components are then used to evaluate the von Mises or Tsai-Wu stress constraints. The
columns of S are also used to compute the stress constraint sensitivities. The thermal stress terms
contribute only to the constraint evaluation and not to the constraint sensitivity.

For principal strain constraints, the operations represented by Equations 5-36 through 5-38 are carried
out in an identical manner except that the stress-strain matrix G is omitted from Equation 5-36. This
results in the computation of the three strain components for the element rather than the stress compo-
nents. There is no correction required for thermal loads since the thermal strains are included in the
calculation of the constraint.

5.4. GLOBAL ASSEMBLY OF MATRICES

This section describes the assembly of the global mass, stiffness and applied loads matrices. The auto-
mated design capability in ASTROS makes it desirable to perform this assembly in two stages. In the
first stage, matrices are assembled that are invariant with respect to the global design variables. In the
second stage, these invariant matrices are multiplied by the current values of the global design variables,
and combined with finite difference sensitivities for nonlinear design variables, to give the final matrices.
Mathematically, for the stiffness matrix, the first stage entails forming a stiffness design sensitivity
matrix of the form:

∂Kgg

∂vi
  =  A    ∑ 

i = 1

nle

   pij k fact
i   +  A    ∑ 

i = 1

nle

   pij  
∂k ee
∂ti

(5-41)

where 
∂Kgg

∂vi
 is the stiffness design sensitivity matrix, Pij is the scalar linking factor defined in Equation

4-6, kfact  are the factored element stiffness matrices associated with linear design variables, 
∂k ee

∂ti
are the

finite difference derivatives associated with nonlinear design variables, i is the subscript for the i th local
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design variable, j is the subscript for the j th global design variable, and nle is the number of local
variables linked to the global variable.

The 
∂Kgg

∂vi
  are global matrices and have rows and columns equal in number to the degrees of freedom in

the g-set and are, therefore, potentially large, sparse matrices. These matrices are stored in ASTROS as
unstructured entities with an associated relation providing information that identifies the degrees of
freedom with which the global design variable is associated.

An equation similar to that of Equation 5-41 is used for the mass matrix:

∂Mgg

∂vi
  =  A    ∑ 

i = 1

nle

   pij m fact
i   +  A    ∑ 

i = 1

nle

   pij  
∂m ee

∂ti
(5-42)

where 
∂Mgg

∂vi
 is the mass design sensitivity matrix, mfact  are the factored element mass matrices associ-

ated with linear design variables, and 
∂m ee

∂ti
are the finite difference derivatives associated with nonlinear

design variables. 

Since, for linear design variables, the 
∂Kgg

∂vi
 and 

∂Mgg

∂vi
 matrices are independent of the values of the global

design variables, the first term of the assembly process indicated in Equations 5-41 and 5-42 needs to be
performed only once for a given design task. Another motivation for forming these matrices is that they
are required in the sensitivity calculations.

Inside the design loop, the nonlinear elemental matrices are recomputed and a second assembly takes
place to form the final global matrices:

K gg  =  A  k fixed
ee   +  A    ∑

j
  ∑ 

i

   pij k fact
i  vj  +  A  k nl

ee  +  A  ∑ 
j

   vj
α DKBV (5-43)

M gg  =  A  m fixed
ee   +  A    ∑

j
  ∑ 

i

   pij m fact
i  vj  +  A  m nl

ee  +  A  ∑ 
j

   vj
α DKBV (5-44)

where the M, K, and v terms are defined in Subsection 4.3, ndv is the number of global design variables
and i and j identify the design variable. The DKBV term of Equation 5-43 corresponds to the special case
of bar elements as described in Subsection 5.1.3.2. The Equation 5-4 relation, in particular, indicates the
source of this term and

DKBV i  =  ∑ 
j = 1

nke

 Pij  k ee
j

R (5-45)
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If there are no bending effects, or if the BAR’s are designed using fully nonlinear variables, this DKBV
term is, of course, not present.

The global stiffness and mass matrices are typically sparse and strongly banded; i.e., the nonzero terms
are located close to the matrix diagonal. These facts are utilized by both the data base in its handling of
sparse matrices and by the large matrix utilities when these matrices, and their partitioned forms,
undergo addition, multiplication, decomposition, etc.

The assembly of the global loads matrix takes a similar path. Outside the design loop, design invariant
portions of the loads are assembled once as part of the preface operations. For the mechanical loads,
there is no design dependent portion so that the entire assembly process essentially takes place at this
time. The one exception to this is that ASTROS retains the NASTRAN concept of simple and combined
loads that permit the user to specify a total loading condition that is the sum of several load vectors:

Pg  =  S 0  ∑ 
i

 S i L i (5-46)

where P is the total load vector, S0 and Si are scalar multipliers and L is a simple load. If this summation

is required, it is performed inside the design loop to accommodate the possibility that a simple load may
be required in more than one P vector.

The gravity and thermal loads are clearly design dependent. The gravity loads are simply:

P  g
GRAV  =  M gg  a g (5-47)

where ag is the global applied acceleration field. In ASTROS, P g
GRAV is assembled from the elemental

mass matrices from direct multiplication:

P g
GRAV  =  A  m fixed

ee   a g
e  +  A    ∑

j
  ∑ 

i

   pij m fact
i  a g

e vj  +  A  m nl
ee a g

e (5-48)

where the first two terms are computed and assembled once in the preface. The simple load sensitivities
are readily computed as:

∂P g
GRAV

∂vj

  =  A    ∑
j

  ∑ 
i

   pij m fact
i  a g

e  +  A    ∑
j

  ∑ 
i

   pij 
∂m ee

∂t i
 a g

e (5-49)

where again the first term is formed only once.

The global thermal load sensitivity vectors are a somewhat complicated combination of the fixed, fac-
tored, and nonlinear elemental thermal vectors, Tee , the grid point temperatures, TGRID , and the

material reference temperatures, TREF .
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P g
THERM  =  A  T fixed

ee   ( TGRID − Tref )

                   +  A    ∑
j

  ∑ 
i

   pij T fact
i   ( TGRID − Tref ) 

                   +  A  T nl
ee  ( TGRID − Tref )

(5-50)

where the first two terms are computed once and augmented in the design loop with the third term. 

Similarly, the sensitivities are formed as:

∂P g
THERM

∂vj

 =  A  ∑ 
i

 pij T fact
i   ( TGRID − Tref )  +  A  ∑ 

i

 pij 
∂T ee

∂ti
  ( TGRID − Tref ) (5-51)

where only the second term is recomputed within the design loop.
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Chapter 6.

STATIC ANALYSIS

The static analysis capability in ASTROS provides the capability to analyze and design linear structures
subjected to time invariant loading. This Chapter emphasizes the matrix algebra that is used in this
analysis. This algebra is straightforward and should be familiar to most analysts, but it is described in
some detail here since it is basic to the operation of the procedure, particularly as it applies to the
standard MAPOL sequence described in Appendix C of the User’s Manual. The presentation given here
includes inertia relief terms throughout, even though this is a somewhat esoteric concept in structural
analysis. It is included both because it provides the most general formulation and because it foreshadows
the discussion of static aeroelasticity where inertia relief is central to the discussion of free flying aircraft.
The notation of Section 2.3 is used extensively in this discussion and only the terms which have not been
previously defined are defined here.

6.1. MATRIX EQUATIONS FOR STATIC ANALYSIS

The equilibrium equation for ASTROS static analysis in the g-set is:

Kgg ug  +  Mgg u
..

g  =  Pg (6-1)

Following the hierarchy of Figure 2-1, the g-set is partitioned into m-set and n-set. The relationship
between these dependent and independent degrees of freedom is given by matrix Tmn:

um  =  Tmn un (6-2)

An identical relation holds for the accelerations.

These multipoint constraints produce forces on the structure which are designated cg. The work per-

formed by these forces must be, by definition, equal to zero. Section 5.4 of Reference 1 demonstrates that
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this work consideration leads to a condition that the constraint forces have an equation similar to
Equation 6-2:

cg  =  




 −Tmn
 T

 I
 



  qm   ≡   0 (6-3)

where the qm are unknown forces that are included in the solution process. Equations 6-1, 6-2 and 6-3

can be combined to give :










  

K
__

nn
Kmn
Tmn

   

Knm
Kmn
 −I

  
Tmn

 T

 −I
0

  










    










  

un
um
qm

  










   +   










  

M
__

nn
Mmn
Tmn

  

Mnm
Mmm
 −I

  










   




 
u
..

n
u
..

m




   =   










  

P
__

n
Pm
0

  











where the bar over certain terms refers to the elements in the partitions of g-size matrix before reduction
to the n-set. This notation is used throughout this section. These equations can be solved for un and u

..
n in

terms of qm, um, and um to give:

Knnun  +  Mnn u
..

n  =  Pn

where:

Knn  =  K
__

nn  +  Knm Tmn  +  Tmn
 T  


 Kmn  +  KmmTmn 



Mnn  =  M
__

nn  +  Mnm Tmn  +  Tmn
 T  


 Mmn  +  MmmTmn 



(6-4)

Pn  =  P
__

n  +  Tmn
 T  Pm (6-5)

The next set of reductions involve the forces of single-point constraint. These constraints are of the form:

us  =  Ys (6-6)

The accelerations associated with these degrees of freedom are zero.

If these constraints are placed in Equation 6-4, the partitioned equations are:





 Kff
 Ksf

  
 Kfs
 Kss

 



  





 uf
 Ys

 



  +  





 Mff
 Msf

  
 Mfs
 Mss

 



  





 u
..

f
 0

 



  =  





 P
__

f
 Ps

 



 (6-7)

and the reduction to the f-set is done by retaining the first row of Equation 6-7:

Kff uf  +  Mff u
..

f  =  Pf (6-8)

where

Pf  =  P
__

f  −  Kfs  Ys (6-9)
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The reduction to the a-set involves further partitioning of Equation 6-8 to give :








 Kaa

 Kao
T   

 Kao

 Koo

 






  





 ua
 uo

 



  +  








 Maa

 Mao
 T   

 Mao

 Moo

 






  





 u
..

a
u
..

o




  =  





 P
__

a
 Po

 



    (6-10)

In a manner consistent with Guyan reduction, the mass matrix is reduced using a static condensation
transformation of the mass matrix to relate the omitted and retained degrees of freedom:

u
..

o  =  −  
 Koo

 −1 Koa  u
..

a  =  Go u
..

a (6-11)

The stiffness reduction is performed using the more exact form:

uo  =  Koo
 −1 Po  −  Koo

 −1 Koa  ua (6-12)

These reductions can be applied with Equation 6-10 to give:

Kaa ua  +  Maa u
..

a  =  Pa (6-13)

where

Kaa  =  K
__

aa  +  Kao Go

Pa  =  P
__

a − Go
T Po

Maa  =  M
__

aa  +  Moa Go  +  Go Moa  +  Go
 T Moo Go

 (6-14)

☞
It must be emphasized that the Guyan reduction of Equation 6-13 is approximate in
that deformations due to inertial forces applied to the omitted degrees of freedom are
neglected. The specification of the a-set degrees of freedom is therefore critical and
places a burden on the user to take care in this specification. The dynamic reduction
technique, described in Section 7.1, provides an alternative that is less demanding of
the user. 

A final point on the reduction to the a-set is that the reduction of Equation 6-13 is exact if there are no
mass terms. Therefore, if a modal analysis and a static analysis, without inertia relief, share a boundary
condition, the static analysis results will be the same as if no reduction took place and the modal analysis
can benefit from any efficiency considerations associated with a reduced size eigenanalysis.

With the matrices in the a-set, the final partition is to the l-set and r-set:





 K ll
 K rl

  
 K lr
 K rr

 



  





 u l
 u r

 



  +  





 M ll
 M rl

  
 M lr
 M rr

 



  





 u
..

 l
u
..

 r




  =  





 P
__

 l
 P r

 



  (6-15)

The r-set contains degrees of freedom equal in number to the number of rigid body modes in the
structure. In ASTROS, as in NASTRAN, the r-set displacements are arbitrarily set to zero. The ASTROS
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shapes could be determined from a direct consideration of the geometry of the structure, but they are
determined in NASTRAN and ASTROS by solving for the displacements of an unloaded structure using
the stiffness matrices:

u l  =  − K ll
 −1 K lr ur (6-16)

with

D  =  − K ll
 −1 K lr (6-17)

designated the rigid body transformation matrix. Since the accelerations include only rigid body motions,
it is possible to specify a relationship for the accelerations of Equation 6-15:

u
..

 l  =  D u
..

r (6-18)

If Equation 6-18 is substituted into Equation 6-15, the following relationship results:
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
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




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


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
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


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
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
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
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


(6-19)

If the first row of this equation is multiplied by D T, and added to the second, a simplified form of
Equation 6-19 results:




 

K ll
R 31  ≡  0

   
K lr

R 32  ≡  0
   

 M ll D + M lr
m r

 



  










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
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
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








 (6-20)

where

mr  =   D TMll D  +  D TMlr  +  Mrl D  +  Mrr (6-21)

is the rigid body mass matrix. The R31 term of the left-hand matrix of Equation 6-20 is zero based on the

definition of the D matrix given in Equation 6-17. The R32  term, which is 

D T K lr  +  K rr (6-22)

is zero  because it represents the work performed on the structure when it undergoes a rigid body
displacement.

The third row of Equation 6-20 can be solved for the accelerations in the r-set and these can be
substituted into  the first row along w ith the restraint condition ur  ≡  0 to solve for ul, the elastic

deformations relative to the support point.  ua can then be recovered as 
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ua  =  



 
u l
0

 




(6-23)

Equation 6-18 is used to recover the accelerations in the l-set, which are then merged with the r-set
accelerations to give u

..
a.

Before continuing the recovery process, it should be noted that the solution process when no inertia terms
are included is simply (from Equation 6-13)

Kaa ua  =  Pa (6-24)

and it is possible to solve for ua directly.

Once the displacements and accelerations have been computed in the a-set, it is a simple matter to
recover to the g-set. The o-set accelerations are recovered directly using Equation 6-11:

u
..

o  =  Go u
..

a  (6-25)

while the o-set displacements recovery first requires that the applied loads be modified to include the
inertia effects:

Po
 i  =  − 


 Moo u

..
o  +  Moa u

..
a 


  =  


 Moo Go  +  Moa 



   u

..
a (6-26)

Equation 6-12 then gives

uo  =  Koo
 −1 


 Po + Po

 i  + Go ua  (6-27)

Merging the a-set and o-set degrees of freedom results in f-set displacements and accelerations. The s-set
accelerations are zero and the displacements are contained in the Ys vector of Equation 6-6 so that

recovery of n-set degrees of freedom is immediate. Finally, the m-set dependent displacements and
accelerations are recovered using Equation 6-2 and those are merged with the n-set vectors to give the
displacements in the g-set.

6.2. CONSTRAINT EVALUATION

Static analyses have the potential of producing displacement and strength constraints. Given the global
displacement vector recovered in the previous section, it is possible to evaluate these constraints directly.
Separate modules in ASTROS evaluate the two types of constraints. The displacement constraints can be
evaluated directly using the definition given in Equations 4-21 and 4-22. Strength constraints are evalu-
ated in a two step process wherein the stress (or strain) components are first obtained by performing the
matrix multiply of Equation 5-15

σ  =  S T ug (6-28)

THEORETICAL MANUAL

ASTROS STATIC ANALYSIS 6-5



and then the constraints themselves are computed, based on the constraint type and the element type, as
discussed in Sections 4.3 and 5.3. It can perhaps be appreciated that the majority of the effort involved in
evaluating these constraints is of a bookkeeping nature.

6.3. SENSITIVITY ANALYSIS

The final portion of the static analysis is the determination of the sensitivity of the constraints to changes
in the design variables. The static analysis constraints can be expressed as functions of the design
variables and the static response:

g  =  f (u, v)  (6-29)

The sensitivity of the j th constraint to a change in the i th design variable is given by

∂ gj

∂vi
  =  

∂ fj
∂vi

  +  
∂fj

 T

∂u
   

∂u
∂vi

 (6-30)

In general, static constraints may be directly dependent on the design variable 




∂fj
∂vi

  ≠  0



 or only indi-

rectly dependent 




∂fj
∂vi

  ≡  0



. For the case of linear design variables (K, M, B are linear in υ), 

∂fj
∂vi

  ≡  0 for

stress, strain and displacement constraints. For nonlinear design variables, however, the term 
∂fj
∂vi

 is

nonzero.

Returning to Equation 6-30, strength constraint sensitivities are evaluated using the first and second

terms. The 
∂f
∂u

 portion is computed using straightforward chain rule operations. Calculation of this term

for displacement constraints and for von Mises stress constraints are given here as examples that should
be adequate for motivating how the term would be evaluated for the remaining constraints.

6.3.1. Displacement Constraints

Upper bound displacement constraints are defined in ASTROS as (see Equation 4-21).

g  =  ∑ 
i=1

ndisp

 
ai ui

δi
all

  − 1.0  (6-31)

where δi
all

 is the allowable upper bound.
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The 
∂f
∂u

 term is a vector that is computed in the global analysis set. The only nonzero terms in this vector

are associated with the degrees of freedom of the displacements included in the constraint. These values

are 
ai

δi
all

. For displacements, 
∂f
∂v

 is zero for linear and nonlinear variables.

6.3.2. Von Mises Stress Constraints

Von Mises constraints are defined in ASTROS as (see Equation 2-8)

g  =  






  





σx

S1





2

  +  




σy

S2





2

  −  
σx σy

S1S2
  +  





τxy

Fs





2

  







 
1
2

  − 1.0 (4-8)

The 
∂f
∂u

 term for this constraint is derived to be

∂f
∂u

  =  1

2 ( g + 1.0 )
    










   







 
2σx

S1
2  −  

σy

S1S2
 






  

∂σx

∂u
  +  







 
2σy

S2
2  −  

σx

S1S2
 






  

∂σy

∂u
  +  

2τxy

Fs
 2   

∂τxy

∂u
  










(6-32a)

Equation 6-28 is used to supply the gradients of the stress components with respect to the displacements.

They are columns of the S matrix. The overall 
∂f
∂u

 vector is therefore the weighted sum of up to three

columns in the S matrix depending on the terms used in the constraint. The 
∂f
∂v

 term is computed for

nonlinear design variables only. Using a finite difference approach, the direct sensitivity of the S

matrix is computed in a similar manner, providing the 
∂f
∂v

 term.

∂f
∂v

  =  1

2 ( g + 1.0 )










  








 2σx

S1
 2  − 

σy

S1S2 







  





∂Sx
∂v

 u



  +  








 2σy

S2
 2  − 

σx

S1S2 







  





∂Sy

∂v
 u




  +  

 2τxy

FS
 2   





∂Sxy

∂v
 u




  










(6-32b)

It would appear that the only remaining task to complete the sensitivity analysis is the computation

of the  
∂u
∂v

 vector. In many cases, this is true, but ASTROS also contains an alternative analysis

procedure that does not require the explicit calculation of this vector. These two alternatives, desig-
nated the gradient and the virtual load methods, are now described in a qualitative manner. This is
followed by a more detailed formulation of the methods as they are implemented in ASTROS. Refer-
ences 17 and 18 provide a more general formulation and discussion of the two methods.

The basic equation for static analysis is

THEORETICAL MANUAL

ASTROS STATIC ANALYSIS 6-7



K u  =  P (6-33)

This equation is written without regard to displacement set, hence, its qualitative nature. The
sensitivity of the displacements to a design variable can be written as

K 
∂u
∂v

  =  
∂P
∂v

 − 
∂K
∂v

 u   (6-34)

Note that Equations 6-33 and 6-34 have the same stiffness matrix on the left-hand side and this
similarity is exploited in ASTROS by storing the decomposed stiffness matrix when it is computed during
the solution of Equation 6-33 and then retrieving this matrix for the solution of Equation 6-34. This

straightforward approach to obtaining 
∂u
∂v

 is designated the gradient approach in ASTROS terminology.

The alternative, virtual loads method, solves for the virtual displacements that would result if the 
∂f
∂u

vector were applied as a load to the structure:

K w  =  
∂f
∂u

(6-35)

where w is the virtual displacement and, again, the similarity of Equation 6-33 to Equation 6-35 is used
to avoid unnecessary decompositions of the stiffness matrix. If Equations 6-30, 6-34 and 6-35 are com-
bined, the constraint sensitivity can be written as

∂g
∂v

  =  wT  



 
∂P
∂v

  −  
∂K
∂v

  u 



  +  

∂f
∂v

 (6-36)

If inertia relief effects are included in the static analysis, the virtual load approach to sensitivity analysis

does not apply since the K −T K  =  I simplification required in Equation 6-36 is no longer possible. The
gradient approach is therefore always used for the somewhat esoteric task of designing a structure while
including inertia relief effects. For the more typical static analysis without inertia relief, the standard
MAPOL sequence selects the approach that requires the least number of forward-backward substitutions;
i.e., whether Equation 6-34 or 6-35 has the fewer right-hand sides. For Equation 6-34, the number of
right-hand sides is equal to the number of active load cases times the number of design variables. For
Equation 6-35, the number of right-hand sides is equal to the number of active displacement dependent
constraints. It is difficult to generalize as to which approach will be chosen in a typical, real world design
task, but it should be obvious that, for a large problem, one method could be significantly more efficient
than the other. The actual calculations used in ASTROS for these two approaches are now given.

6.3.3. The Gradient Method

As indicated above, the gradient method of sensitivity evaluation is a straightforward application of
derivative operations. In ASTROS, the formulation starts from taking the derivative of Equation 6-1 with
respect to a design variable:

Kgg  
∂ug

∂v
  +  Mgg  

∂u
..

g

∂v
  =  

∂Pg

∂v
  −  

∂Kgg
∂v

  ug  −  
∂Mgg

∂v
  u

..
g (6-37)
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This equation has been written with the known terms on the right-hand side and the unknowns are the
sensitivities of the displacements and accelerations in the g-set. Equation 6-37 is solved by going through
a reduction and recovery process much like that given in Section 6.2 for the solution of Equation 6-1. In
fact, the left-hand side reductions of the mass and stiffness matrices are identical in the two solutions so
that these reductions are not repeated here, nor are they repeated in the ASTROS procedure.

The first term on the right-hand side is the sensitivity of the applied loads to the design variables.
Section 5.4 shows that only gravity and thermal loads can vary with the design and that the sensitivity of

these loads to the i th design variable is simply










 
∂Pg

∂vi
 









GRAV

  and  









 
∂Pg

∂vi
 









THERM

(6-38)

Similarly, the sensitivity of the stiffness matrix to the i th design variable is, from Equation 5-43

 
∂K gg

∂vj
  =  A    ∑ 

i

   pij k fact
i   +  A    ∑ 

i

   pij  
∂k ee

∂ti
  +  α vi

 (α − 1)  DKBV i (6-39)

where the third term is zero except for the special case for the linearized design of bars. The sensitivity of
the mass matrix is, from Equation 5-44:

∂M gg

∂vj
  =  A    ∑ 

i

   pij m fact
i   +  A    ∑ 

i

   pij  
∂m ee

∂ti
(6-40)

For ease of notation, the right hand side of Equation 6-37 is designated 
∂Rg

∂vi
 in the following, where

∂R g
∂vi

  =  
∂P g

GRAV

∂vi
  +  

∂P g
THERM

∂vi
  −  

∂K gg
∂vi

 ug  −  
∂M gg

∂vi
 u
..

g (6-41)

The specification of this pseudo-load in other displacement sets then follows the previous convention of

using 
∂R
∂v

 to indicate the vector and the subscript to indicate the set. The last term in Equation (6-41) is

needed for the inertia relief formulation of Section 6.1. 

The reduction of Equation (6-41) to the n-set follows that given for the applied loads in Section 6.1:

∂Rn

∂vi
  =  

∂Rn

____

∂vi
  +  Tmn  

∂Rm

∂vi
 (6-42)

The single point constraints are removed by a partition of the n-set vectors to give 
∂Rf

∂vi
 ,while the omitted

degrees of freedom contribute to the a-set:
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∂Ra

∂vi
  =  

∂Ra

____

∂vi
  +  Go  

∂Ro

∂vi
 (6-43)

These pseudo-load vectors can be further partitioned into the l-set and r-set and an equation equivalent to
that of Equation 6-20 can be written:










 

Kll

0
     

Klr

0
     

Mll D + Mlr

mr

 










   















 
∂ul

∂vi

 
∂ur

∂vi

 
∂u

..
r

∂vi

 















i

  =    















 
∂Rl

∂v

 D T 
∂Rl

∂vi
 + 

∂Rr

∂vi

 















i

 (6-44)

where the 
∂u
∂v

 vectors and their accompanying subscripts designate the sensitivity of the particular

displacement set to the i th design variable and the 
∂u

..

∂v
 vectors similarly designate the sensitivity of

accelerations.

The second row of Equation 6-44 can now be solved for 
∂u

..
r

∂vi
, the sensitivities of the accelerations in the

r-set, and these can then be substituted into the first row along with the constraint relation  
∂ur

∂v
  ≡  0 to

solve directly for 
∂ul

∂vi
 , the sensitivities of the elastic deformations in the l-set. 

∂u
..

l

∂vi
 is (from Equation 6-18)

equal to D 
∂u

..
r

∂vi
 . Unlike the analysis equations, it is not necessary to further recover the accelerations

since, as Equation 6-30 indicates, the constraint sensitivity information is only a function of the displace-
ment sensitivities. Another subtle point is that the vector multiplication indicated by the second term in
Equation 6-30 gives the same scalar result in the f displacement set as it does if the calculations are
performed in the significantly larger g-set. A substantial efficiency can then result when it is considered
that this vector multiplication (which can have hundreds to thousands of terms) is required for the
sensitivity of all the active constraints with respect to all the design variables. Therefore, the displace-
ment sensitivities are recovered only up to the f-set, which requires computing the sensitivities of the
omitted degrees of freedom in a fashion similar to Equation 6-27.

∂uo

∂vi
  =  Koo

 −1  



 
∂Ro

∂vi
  −  


 Moo Go  +  Moa 


   

∂ua

∂vi
 



  +  Go  

∂ua

∂vi
 (6-45)

and 
∂uf

∂vi
 is obtained by merging the o-set and a-set vectors.
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A remaining step is the reduction of the 
∂f
∂u

 vector to the f-set. This reduction also follows that of the

applied loads so that the reductions are:

∂fj
∂un

  =  
∂fj

___

∂un
  +  Tmn  

∂fj
∂um

 (6-46)

and 
∂fj
∂uf

 is obtained from a simple partitioning operation.

All the terms are now in place to calculate the constraint sensitivity. The mechanics of this calculation
are rather complex since, although this discussion has been in terms of calculating the sensitivity of a
single constraint to a single design variable, the calculations are performed in ASTROS in a much more
terse fashion. For example, the load sensitivity vectors for all the design variables are computed simulta-

neously so that the 
∂Rg

∂vi
 vector becomes a matrix and the reduction and forward/backward substitution

processes are matrix operations. Similarly, the 
∂fj

∂ug
 vectors for all the constraints are computed and

reduced simultaneously. The matrix which gives the sensitivities of all the constraints to all the design
variables is

A T  =  
∂fj

T

∂uf
  

∂uf

∂v
 (6-47)

where A has a row dimension equal to ndv, the number of global design variables and a column dimen-

sion equal to nac, the number of active constraints. 
∂fj

∂uf
 is of dimension f-size, the number of degrees of

freedom in the f-set, by nac, and 
∂uf

∂v
 is of dimension f-size by ndv times nalc. The nalc term is the number

of active load cases. The matrix multiplication indicated in Equation 6-47 is not conformable when nalc is
greater than one. It is therefore necessary to perform partitioning operations inside an ASTROS module
to subdivide the matrices into the proper conforming form.

Note that the A matrix of Equation 6-47 contains only the constraints produced by the static analyses.
Thickness, frequency and aeroelastic constraint sensitivities must be appended onto this matrix before
the redesign process can take place.

6.3.4. The Virtual Displacement Method

As indicated by Equation 6-35, the virtual displacement method entails solving for right-hand side
vectors that are based on the sensitivity of the constraint to the displacement. These vectors must be
reduced to the a-set (recall that inertia relief is not supported for this option so that reduction beyond the
a-set is not possible or necessary). The reduction to the f-set has already been described in Equation 6-46
and the accompanying text. The reduction from the f-set to the a-set is simply
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∂fj
∂ua

  =  
∂fj

___

∂ua
  +  Go  

∂fj
∂uo

 (6-48)

Given these vectors, the virtual displacements are calculated from

Kaa  waj  =  
∂fj
∂ua

 (6-49)

The omitted virtual displacements are recovered using

woj  =  Koo
 −1  

∂fj
∂uo

  +  Go  waj (6-50)

A merge operation produces wf
j
 and Equation 6-36 is used to generate the constraint sensitivity informa-

tion:

∂gj

∂vi
  =  w f

j

 T  
∂Rf
∂vi

(6-51)

where the 
∂Rf

∂vi
 vector has been previously derived following Equation 6-42 and, again, the absence of

inertia relief means that the mass terms used to generate the pseudo-load vectors are also absent.

Equation 6-51 can be expressed in matrix form to give

A T  =  w f
 T  

∂R
∂v

 (6-52)

where w f
 Tand 

∂R
∂v

  are matrices made up of vectors given in the corresponding term in Equation 6-51.

The comments regarding matrix compatibility and manipulation given after Equation 6-47 apply to the
Equation 6-52 calculation as well.
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Chapter 7.

MODAL ANALYSIS

The modal analysis feature in ASTROS provides the capability to analyze and design linear structures
for their modal characteristics; i.e., eigenvalues and eigenvectors. The design aspect of ASTROS places
limits on the frequencies of the structures (see Section 2.3). The modal analysis is not only useful in its
own right, but also provides the basis for a number of further dynamic analyses. Flutter analyses in
ASTROS are always performed in modal coordinates. As detailed in Chapter 11, transient and frequency
response analyses can be performed in either modal or physical coordinates, at the selection of the user.

Modal analyses typically are performed with degrees of freedom much fewer in number than static
analyses. The two principal eigenextraction methods, Givens and Lanczos, are described in this Chapter.
Additionally, for users who prefer reduction methods, there is an alternative procedure to the Guyan
reduction technique described in Chapter 6, called Dynamic Reduction., Finally, there is a discussion of
the design aspects of modal response in terms of constraint evaluation and sensitivity analysis. The user
has the option of selecting which ASTROS option is to be used for a particular analysis. 

7.1.  THE EIGENANALYSIS METHODS

The eigenanalysis in ASTROS solves the general problem:



 Kaa − λ  Maa Φa 


 =  0 (7-1)

where the a subscript is used to indicate matrices that have been obtained by the Guyan reduction of
Equations 6-14 or from the Dynamic Reduction to the q-set shown later in Equations 7-17 and 7-18.
Three methods of eigenanalysis are available: the Lanczos method which is the most efficient; the Inverse
Power method; and the Given’s method. Each of these are described in the following sections.
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7.1.1. The Lanczos Method 

In comparison to the Inverse Power Method, described below, a much more robust and efficient method
for obtaining the highest or lowest eigenvalues of a system is called the Lanczos Method. This method,
developed in the 1950s, is an iterative technique, about which many papers and books have been written.
A detailed technical description of this method is well beyond the scope of this manual. Those interested
in general background should consider reading, for example, [Parlett80] and [Hughes87]. The UAI/NAS-
TRAN algorithm is based on work with high-performance eigenextraction algorithms described in
[Grimes86] and [Grimes91]. In general, this is the best method for extracting a small set of eigenvalues
from a large, sparse system. 

7.1.2. The Inverse Power Method

The Inverse Power method with shifts (Reference 1) is an iterative procedure applied directly to 7-1. It is
required to find all of the eigenvalues and eigenvectors with a specified range of λ . Let:

λ  =  λo + Λ (7-2)

where λo  is a constant called the shift point. Therefore, Λ  replaces λ  as the eigenvalue of the system.

The algorithm for the nth iteration step is defined by:



 Kaa − λo  Maa 


  wn =  Maa  

1
c n − 1

  w n − 1 (7-3)

where cn  , a scalar, is equal to the element of the vector wn  with the largest absolute value. At

convergence, 1 ⁄ c
n
  converges to Λ  , the shifted eigenvalue closest to the shift point and wn  converges to

the corresponding eigenvector ϕ  . Note from 7-3 that a triangular decomposition of 

 Kaa − λo  Maa 


  is

necessary in order to evaluate wn . The shift point, λo , can be changed in order to improve the rate of

convergence toward a particular eigenvalue, or to improve accuracy and convergence rates after several
roots have been extracted fromabout a given shift point. Also, λo , can be calculated such that the

eigenvalues within a desired frequency band can be found rather than those that have the smallest
absolute value.

For calculating additional eigenvalues, the trial vectors wn  in 7-3 must be swept to eliminate contribu-

tions due to previously found eigenvalues that are closer to the shift point than the current eigenvalue.
The algorithm to do this is:

ϕn  =  w
__

n  −   ∑ 
i = 1

m

  

  ϕ

__
i
 t  M  w

__
n  


  ϕ

__
i (7-4)

where w
__

n  is the trial vector being swept, m is the number of previously swept eigenvalues, and ϕ
__

i  is

defined by:
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ϕ
__

 i  =  
w i , N

√  w i , N
  t   M  w i , N

(7-5)

where w i , N  is the last eigenvector found in iterating for the ith eigenvalue.

7.1.3. The Given’s Method

The Givens, or Tridiagonal, method of eigenanalysis is also available. This well known algorithm is
briefly summarized here, with more detailed information available in Sections 9.2 and 10.2 of Reference 1
and Section 13.5 of Reference 14.

If there are rigid body modes, it is recommended that the support concepts of Equations 6-16 through
6-18 be used to define these modes. The calculated rigid body modes are:

Φr
 T mr Φr  =  I (7-6)

and mr is the rigid body mass matrix of Equation 6-21.

The Given’s method of eigenanalysis proceeds into six steps outlined below:

1. The mass matrix is decomposed into Choleski factors:

Maa  =  C C T (7-7)

and this is substituted into Equation 7-1 to give:

Kaa  =  λ C C T Φa  =  0 (7-8)

2. Intermediate vectors are defined as

a  =  C T Φa (7-9)

and Equation 7-8 is multiplied by C −1 to give

J − λI  a  =  0 (7-10)

where

J  =  C −1 Kaa C −T (7-11)

and the -T indicates inverse transpose.

3.  The J matrix is then reduced to tridiagonal form using the Given’s method as described in Section
10.2.2 of Reference 1. 

4. A Q-R iterative algorithm is then used to further transform this matrix to a diagonal form, where the
diagonal terms are the eigenvalues of the system.

THEORETICAL MANUAL

ASTROS MODAL ANALYSIS 7-3



5. The extracted eigenvalue is then substituted in Equation 7-36 and solved for the corresponding
eigenvector. The number of eigenvectors that are to be determined is specified by the user. Although it
would appear that this equation could be solved by direct substitution, this technique has been shown to
be unpredictable and an alternative, iterative procedure based on an algorithm given on pages 315 - 330
of Reference 20 is used.

6. The eigenvector in the a-set degrees of freedom are calculated based on Equation 7-9:

Φa  =  C −1 a (7-12)

Recovery of the modes to the global set is similar to that given for the displacement recovery in Section
6.1. If Dynamic Reduction has been used, the f-set degrees of freedom are calculated from Equation 7-1
while a similar recovery is used for Guyan Reduction:

Φf  =  



 

I

Go
 



  a  Φa (7-13)

where Go is given by Equation 6-11.

Recovery to the n-set entails merging in any enforced displacements while the m-set displacements are
obtained in a manner similar to Equation 6-2

Φm  =  Tmn Φn (7-14)

The eigenvectors in the g-set are then obtained by merging m-set and n-set DOF

Φg  =  



 
Φm
Φn

 




(7-15)

7.2.  GENERALIZED DYNAMIC REDUCTION

Generalized Dynamic Reduction (GDR) is a method that has been formulated for reducing degrees of
freedom (DOF) by using so-called generalized DOF to represent the dynamic behavior of the structural
model. The displacements of these generalized DOF are internally computed. GDR requires fewer dy-
namic DOF than the Guyan reduction method for comparable accuracy and, more importantly, it elimi-
nates the burden of user selection of appropriate dynamic DOF.

GDR performs dynamic reduction by a combination of three methods: the Guyan reduction, the inertia
relief shapes and subspace iteration techniques. The user has the option to select any combination of
the three methods. The Guyan reduction has already been discussed and can be characterized as using
the static displacement shapes as the generalized DOF. When used in GDR, it allows the user to retain
some of the physical DOF along with the generalized DOF. The inertia relief shapes use the displacement
shapes due to the inertia loads as the generalized DOF. Finally, general subspace iteration techniques
are used to compute a set of approximate eigenvectors and these approximate eigenvectors are used as
the generalized DOF.
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Of the three methods, the general subspace iteration technique results in the most accurate eigenvalues
and eigenvectors. However, Guyan reduction is available to allow the user to retain specific physical
DOF. For transient response analyses, the inertia relief shapes can be used to reduce modal truncation
errors which, therefore, result in improved element stress calculations.

Physical DOF in the f-set are related to the generalized DOF by the following equation:

uf  =  




ua
uo




  =  








I

Goa

  
0

Gok

  
0

Goj







    











ua
uk
uj










  =  Gfq  uq (7-16)

where the a-set and o-set have been defined previously and

uk are generalized DOF representing approximate eigenvectors

uj are generalized DOF representing inertia relief shapes

uq is the union of ua, uk, and uj

Goa is the Guyan reduction constraint relationship

Gok is the transformation to define the approximate eigenvectors

Goj is the transformation to define the inertia relief generalized DOF

Gfq is the overall transformation matrix such that the stiffness matrix and

the mass matrix in the generalized coordinates are

Kqq  =  Gfq
 T Kff Gfq (7-17)

Mqq  =  Gfq
 T Mff Gfq (7-18)

The Goa matrix is identical to the Go matrix of Equation 6-11 and therefore does not require further

discussion. The Gok and Goj matrices are discussed in the following sections.

7.2.1.  Inertia Relief Shapes

In most transient response problems, Guyan reduction gives a reasonable approximation to the accelera-
tion responses if the retained DOF are appropriately selected. However, the stress responses are likely to
be inaccurate unless a large number of DOF are retained for analysis. One method to improve the stress
responses is by using the inertia relief shapes.

The inertia relief shapes are the displacement shapes of the eliminated DOF, uo , obtained by imposing

an acceleration field on the structural model. Two types are treated here: (1) inertia relief shapes due to
the acceleration of the origin of the basic coordinate system and (2) inertia shapes due to an acceleration
field caused by specified DOF. The user can select either or both types. The DOF to be eliminated are
related to the inertia relief DOF, uj , by
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uo  =  Goj uj  =  Goj
 c Goj

 s    










 uj
 c 

 uj
 s 










(7-19)

where uj
 c  denotes the inertia relief shape DOF due to coordinate acceleration and uj

 s  denotes those due

to acceleration caused by user specified DOF. Goj
 c  and Gof

 s  are corresponding transformations.

The calculation of the Goj
 c matrix begins by assuming that the origin of the basic coordinate system (see

Section 2.1) is subjected to an acceleration u
..

 c, where u
..

 c has six DOF. The inertia force on the structural

model is

Fg  =  Mgg Ggc u
..

c (7-20)

where Ggc is a rigid body transformation matrix to transform displacements at the origin to displace-

ments at the physical DOF and can be easily computed based on geometric data. Equation 7-20 repre-
sents an applied load where response can be computed using the same techniques as those given in
Section 6.1. The basic equilibrium equation is

Kgg  ug  =  Mgg Ggc u
..

c (7-21)

A reduction of this equation produces an equation for the uo vector of Equation 7-19:

Koo uo  =  

 Mog + Tmo

 T  Mmg 

 Ggc u

..
c (7-22)

where Mog, Tmo and Mmg are partitions of the Mgg and Tmn (the multi-point constraint matrix) matrices.

Note that the Go ua term of Equation 6-12 is absent in this equation. This is because this term is

redundant with the effects produced by the Goa matrix of Equation 7-16.

The u c vector contains the generalized DOF due to accelerations of the origin of the basic coordinate

system, i.e:

uj
 c  =  uc (7-23)

Equation 7-22 therefore, provides the required transformation:

uo  =  Goj
 c  uj

 c (7-24)

where

Goj
 c  =  Koo

 −1  

 Mog + Tmo

 T   Mmg 

  Ggc (7-25)

The calculation of the Goj
 s matrix follows a similar path and starts by specifying that certain retained

degrees of freedom are given a unit acceleration:
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uj
 s  =  u

..
a (7-26)

The response of the omitted degrees of freedom to acceleration is obtained from

Koo uo  =  − Moo u
..

o − Moa u
..

a (7-27)

where again the effect of the displacement of the analysis set has been neglected since this information is
redundant with the Goa matrix.

By making the usual assumption of Guyan reduction that (cf. Equation 6-25)

u
..

o  =  Goa u
..

a (7-28)

then Equations 7-16, 7-26, 7-27, and 7-28 combine to give

Goj
 s  =  − Koo

 −1  

 Moo + Goa  Moa 


(7-29)

As a final note on the inertial relief shapes, experience has shown that it is necessary that the degrees of
freedom which are used to create these shapes must be included as a-set degrees of freedom.

7.2.2.  Approximate Eigenvectors

The Gok matrix of Equation 7-1 contains column vectors that approximate the lowest eigenvectors of the

structural modal. A general theoretical derivation of this matrix is now given and this is followed by a
discussion of some of the detailed considerations that go into making this powerful technique a practical
one.

The standard structural eigenvalue problem is written as


 K − λM  ϕ  =  0 (7-30)

Successive iterations of an inverse power approach for the computation of eigenvalues and eigenvectors of
Equation 7-15 provide approximate eigenvectors. This approach applies a recursion relation of the form



 K − λsM 


   ui + 1  =  

1
ci

 M ui (7-31)

where ci is the maximum component of ui and λs is a shift point that is defined subsequently. The

subspace made up of these vectors is

G  =  u0, u1, u2 , … , um−1 (7-32)

If the complete set of eigenvectors (or modes) is given by Φ, then each of the un vectors can be expressed

as
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un + 1  =  Φ αn + 1

un  =  Φ αn

(7-33)

The mode shapes are orthogonal so that

ϕi K ϕj  =  



  

λi   if   i = j

0.0   if   i ≠ j
(7-34)

ϕi M ϕj  =  



  
1.0   if   i = j
0.0   if   i ≠ j

(7-35)

If Equation 7-33 is placed into Equation 7-31 and the resulting equations are pre-multiplied by Φ T, the
Equations 7-34 and 7-35 relations give

αj, n + 1

αj, n
  =  

1

cn 

 λj − λs 




(7-36)

where the notation αj,n indicates the j th element of the αn vector. Equation 7-36 indicates that the

relative proportion of an eigenvector in successive trial vectors increases inversely to the magnitude of its
shifted eigenvalue. The series therefore converges to the eigenvector closest to the shift point. The series
of vectors given by Equation 7-32 are used to generate Gok by setting the first column of Gok to the last

vector computed in the iteration process. The next to last vector is mass orthogonalized with respect to
the last vector to give the second column of Gok. This process is repeated for preceding vectors of

Equation 7-32 until the desired number of approximate eigenvectors are obtained.

Details that are needed to complete the algorithm are (1) specification of number of iterates (m in
Equation 7-32), (2) specification of λs, (3) specification of u 0, and (4) rejection of parallel vectors. Each of

these is now briefly discussed.

Number of Iterates

Though the set of vectors given by Equation 7-17 should contain all the approximate eigenvectors, they
are not necessarily a good basis for Gok. This is because some of the vectors may be parallel to one

another to within the accuracy of the computer and others may be a linear combination of two or more
other vectors. Therefore, it is necessary to determine more vectors in Equation 7-32 than there are
eigenvectors and use the mass orthonormalization to select out an appropriate reduced set.

If λmax is the highest frequency of interest, then Sturm sequence properties can be used to determine

Nmax, the number of eigenvalues below max. A safety factor of kf is then applied to give

m  =  kf  Nmax (7-372)

A safety factor of 1.5 is used in ASTROS.
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Determination of λs

Computer accuracy considerations also determine λs. If the range of eigenvalues varies from 0 to λmax ,

Equation 7-36 indicates that the α values at the m th iteration range from

αj, m

αj, o
  =  




 

−λs

λmax − λs
 




 m

  =  ε (7-38)

If the precision of the computer is less than ε, then the components of the vector series differ from one
another in an insignificant, random fashion. Therefore, to ensure meaningful results, the shift value can
be computed from

λs  =  
λmax  εc

1 − εc
  

1
m

(7-39)

where 10 −8 is selected in ASTROS as a representative value for ε c, the precision of the computer.

Specification of Starting Vector

The u 0 vector in Equation 7-32 needs to be selected so that it contains all the approximate eigenvectors.

This is done by generating an initial vector using a random number generator. To provide added assur-
ance, six distinct initial vectors are generated in this way and the orthonormalization process inter-
weaves results from each of the six series of vectors.

Rejection of Parallel Vectors

Despite the precautions taken to ensure orthogonal vectors, it is still possible for the iterative algorithm
to produce parallel results. This is checked in ASTROS by rejecting vectors whose norm is less than a
specified threshold. In ASTROS, this threshold is computed by reference to Equation 7-38 and by assum-
ing that the kf factor will produce a maximum eigenfrequency of kf λmax. This gives a rejection threshold

of

εr  =  



 

−λs

−λs + kf λmax
 




 n

(7-40)

and when λs is substituted from Equation 7-39, this gives

εr  =  
εc


 

kf + ( 1 − kf ) εc
 1⁄n 

 n (7-41)
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Substantial testing of the dynamic reduction algorithm on large problems has shown that this value of εr

performs well, while use of ε c directly rejects too many candidate vectors.

7.3.  CONSTRAINT EVALUATION

Given the eigenvalues, the constraint values are determined as:

gj  =  1.0 − 
(2 π fhigh)

2

λj
(7-42)

for upper bound constraints and

gj  =  
(2 π fhigh)

2

λj
   − 1.0 (7-43)

for lower bound constraints, where fhigh and flow are the frequency limits as specified in Equation 4-24

and λj is the extracted eigenvalue. The extracted value has been placed in the denominator because there

is a desire (see Section 13.1) to express constraints in a form that make them linear in the inverse of the
design variable. The assumption made here is that non-structural mass makes the eigenvalue much more
sensitive to changes in the structural stiffness than to mass changes. The stiffness, in turn, is assumed to
be a linear function of the design variable. Obviously, there are cases where these assumptions do not
apply.

7.4.  FREQUENCY CONSTRAINT SENSITIVITIES

The calculation of sensitivities of frequency constraints to changes in design variables begins by differen-
tiating Equation 7-42 or 7-43. For Equation 7-42, this gives

∂gj

∂vi
  =  

(2 π fhigh )
2

λj
 2    

∂λj

∂vi
  =  

1.0 − gj

λj
   

∂λj

∂vi
(7-44)

The determination of 
∂λj

∂vi
 is performed using well known relationships (Reference 21) that can be repre-

sented conceptually by starting with the basic modal equation:



 K − λj  M 


  ϕ j  =  0 (7-45)

Taking the derivative of 7-45 with respect to vi gives





 ∂K
 ∂vi

  −  
∂λj

∂vi
  M  −  λj  

∂M
∂vi

  



  ϕi  +  [ K − λM ]   

∂ϕj

∂vi
  =  0 (7-46)

THEORETICAL MANUAL

7-10 MODAL ANALYSIS ASTROS



If this equation is premultiplied by ϕj
 T and the self-adjoint nature of the symmetric eigenvalue problem is

utilized, i.e.,

ϕj
 T  


 K − λj  M 


  =  0 (7-47)

then Equation 7-46 becomes

∂λj

∂vi
  =  

ϕj
 T  





 ∂K
 ∂vi

  −  λj  
∂M
∂vi

 



 ϕ

 ϕj
 T M ϕj

(7-48)

Equation 7-48 is evaluated in ASTROS in the g-set, thereby allowing use of the 
∂Kgg

∂v
 and 

∂Mgg

∂v
  matrices

of Equations 5-41 and 5-42 and the vectors of ϕ g of Equation 7-15 that are associated with the con-

strained eigenvalues.
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Chapter 8.

AERODYNAMIC ANALYSES

Accurate aerodynamic analyses are a critical component in the performance of the multidisciplinary
analysis capability contained in ASTROS. This section describes the generation of the steady and un-
steady aerodynamic matrices that are present in ASTROS while subsequent sections describe the appli-
cation of these aerodynamics. The splining techniques that are used to couple the aerodynamic and
structural models are also described in this section.

8.1. STEADY AERODYNAMICS

Steady aerodynamics are used in ASTROS for the computation of loads on an aircraft structure. The
selection of an appropriate algorithm for computing these forces is not an easy task since methods vary in
complexity from "back-of-the-envelope" calculations to sophisticated computational fluid dynamics algo-
rithms. The USSAERO (Unified Subsonic and Supersonic Aerodynamic Analysis) algorithm of Reference
22 was selected primarily because it represents an algorithm of medium complexity, consistent with the
preliminary design role of ASTROS, and because it is an algorithm that has been used extensively in the
performance of aerodynamic and aeroelastic analysis. In particular, the USSAERO code had been inte-
grated with a dynamic structural response capability in the performance of an Air Force supported
contract in the area of maneuver loads (Reference 23) and this experience was directly applicable to the
ASTROS integration task.

8.1.1. USSAERO Capabilities

USSAERO determines the pressure distributions on lifting wing-body-tail combinations using numerical
methods. The solid boundaries are represented by a number of discrete panels as depicted in Figure 8-1.
The flow around the solid boundaries can be estimated by the superposition of source type singularities
for non-lifting bodies and vortex singularities for wing-like singularities. The USSAERO algorithm has
undergone a number of updates and only a subset of the total capabilities have been implemented in
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ASTROS. Therefore, it is necessary that the capabilities of the ASTROS implementation be defined.
Among the features supported are:

1. Subsonic and supersonic analyses.

2. Symmetric and antisymmetric analyses.

3. Multiple lifting surfaces, both coplanar and non-coplanar.

4. Body elements can be used to represent fuselage and pod (e.g., nacelles or stores)
components.

5. Pitch, roll and yaw control surfaces can be specified.

6. Pitch, roll and yaw rates can be specified.

7. Thickness and camber effects on the lifting surfaces.

8. Aerodynamic influence coefficients on both wing and body components (AIC).

Figure 8-1. Aerodynamic Paneling in USSAERO
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It is equally useful to list capabilities that have been installed in USSAERO versions that are not
supported in ASTROS:

1. There is no asymmetric capability, either in terms of the configuration or the aerody-
namic forces.

2. The nonplanar option for representing thick lifting surfaces has only been supported
for rigid aerodynamics analysis. This option is inconsistent with the aerodynamic
influence coefficient requirements for ASTROS aeroelastic analysis.

Subsection 3.3 of the Applications Manual contains guidelines for generating aerodynamic models and
therefore, has more specific information about the USSAERO capabilities in ASTROS.  

8.1.2. USSAERO Methodology

The formulation of the methodology used in ASTROS is contained in Reference 22 while this writeup
provides an overview which defines the aerodynamic matrices which are generated for the steady aeroe-
lastic analyses.

The basic equation in USSAERO is given by:





Abb
Awb

  
Abw
Aww




     




 
σ
γ 




   =   




 
ωb
ωw

 




(8-1)

where

b denotes the body

w denotes the lifting surface

ω are velocities at the panels due to a prescribed boundary condition

σ are source singularities on the body

γ are vortex singularities on the lifting surfaces

A are normal velocity influence coefficients

Terms in the A matrix provide the normal velocity that is produced at a receiving panel due to a unit
value of the singularity at a sending panel. This matrix can be computed from the superposition of
individual velocity influence coefficients, which in turn can be computed from geometric considerations
and the prescribed Mach number. The boundary conditions can account for airfoil camber and thickness,
angle of attack, control surface settings and aircraft rates.

Once the values of the singularities have been determined, the velocity components can be computed and
pressure coefficients at each of the panels are calculated using:

CP
i
  =  

−2

γ M 2
  










  




 1 + 

γ − 1
2

  M 2  (1 − qi
 2)





γ
γ − 1

−1 










(8-2)

where
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M is the Mach number

γ is the Specific heat ratio

qi
2  =  ui

 2 + vi
 2 + wi

 2

ui  =  uo + ∆ ui  i.e. the backwash

vi  =  vo + ∆ vi i.e. the sidewash

wi  =  wo + ∆ wi  i.e. the upwash

uo, vo and wo are the components of the onset flow in the reference axis system and are normalized with

respect to the freestream velocity. Perturbation velocities at each panel, ∆ ui, ∆ vi, ∆ wi, are also normal-

ized with respect to the freestream velocity. For lifting surfaces, the calculation of Equation 8-2 is
repeated for the upper and lower surfaces.

As a final step, these pressure coefficients are dimensionalized and converted to forces. These forces are
output in matrix AIRFRC, the rows of which are the panels and the columns correspond to individual
boundary conditions. This matrix is discussed further in Subsection 9.1.

The AIRFRC matrix provides loads that are applicable if the aircraft is structurally rigid. A second
matrix, AIC, is generated in the USSAERO module to provide for the incremental loads created by the
structural deformations. This matrix is generated in ASTROS by making the approximation that the
pressure expression of Equation 8-2 is

CP
i
  =  

−2 ∆ ui

U∞
(8-3)

This equation is developed by assuming that uo  =  1, ∆ui << 1, vi << 1, wi << 1 and  uses the  mathe -

matical approximation that (1 + ε )
 a

 ≈ 1 + a ε.

The total force on a wing panel can be derived from Equation 8-3.

Fi  =  CP
i
  Ai  =  

− 4 ∆ ui Ai

U∞
(8-4a)

where A i is the area of the panel and equal contributions from the upper and lower surface account for

the factor of two. Similarly, for bodies:

Fi  =  
− 2 ∆ ui Ai

U∞
(8-4b)

The AIC matrix calculation is then

AIC  =  − 2 



 
A

0  
0
A 




  U  




 
Abb
Awb

  
Abw
Aww

 




 −1

(8-5)
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where U is the influence coefficient matrix for the velocity in the streamwise direction due to singulari-
ties of the panels:

U  =  



 

Av
2 Cv

    
Bv

2 Dv
 




(8-6)

where the Av  matrix gives the velocities on body panels due to singularities on the body, the Bv matrix

gives the velocities on the body panels due to singularities on the wing, and the Cv  matrix gives the

velocities on the wing panels due to singularities on the body and Dv gives velocities on the wing panels

due to singularities on the wing.

In the context of multidisciplinary design, a single design task may require analyses at a number of Mach
numbers and both symmetric and antisymmetric conditions. This is accommodated in ASTROS by creat-
ing separate AIC and AIRFRC matrices for each Mach number required in the task and, for antisym-
metric analyses, creating an AAIC matrix which is generated by differencing contributions from the left
and right sides of the aircraft (rather than adding them for symmetric analyses) in the A matrix of
Equation 8-1 and the U matrix of Equation 8-6.

8.2. UNSTEADY AERODYNAMICS

Unsteady aerodynamics are used for a variety of purposes in ASTROS, each of which has its own
requirements. The flutter analysis requires unsteady aerodynamic influence coefficients to integrate the
effects of the structural deformations and the aerodynamic forces in an assessment of dynamic stability.
The gust analysis requires aerodynamic forces, both to generate the loads that the gust creates on the
structure and to estimate the aeroelastic effects in the response to this load. The blast analysis is similar
to the gust analysis, but the methodology for the blast analysis integrated into ASTROS requires these
matrices in a slightly different form (See Appendix B).

Because there are fewer candidates, the selection of the algorithms to provide the unsteady aerodynamic
operators was simplified, relative to the steady case. For subsonic applications, the Doublet Lattice
Method (DLM) algorithm of Reference 24 was selected because it has become an industry standard and
because its implementation in NASTRAN provided a resource for ASTROS code development. For super-
sonic applications, a comparable standard algorithm does not exist, but an obvious candidate did emerge:
the constant pressure method (CPM) of Reference 25. The primary attraction of CPM is that its geometri-
cal input and its matrix output is consistent with doublet lattice so that the majority of the code required
for the two algorithms can be shared. Another attribute is that Northrop has tested the CPM algorithm
extensively, with favorable results (Reference 26). In particular, CPM’s capability to address interfering
and intersecting surfaces was shown to perform well. As in the steady aerodynamics case, the referenced
documents are cited as sources of detailed information on methodology employed in these algorithms.
This manual emphasizes the generation of matrices required in ASTROS applications.

8.2.1. Unsteady Aerodynamics Capabilities

The DLM and CPM procedures calculate matrices which provide forces on panels as a function of
deflections at these panels. As this implies, the discretization of an aircraft into a number of panels, in a
fashion similar to the steady aerodynamics model of Figure 15, is the basis for these methods. Capabili-
ties of the codes include:
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1.Symmetric, antisymmetric and asymmetric analyses with respect to the aircraft centerline are available.
2.Symmetric and asymmetric analysis with respect to the x-y plane is also provided by DLM. Symmetric

analysis represents a ground effect option. Only asymmetric analyses are available in CPM.
3.The DLM permits the use of slender body theory and interference panels to model the effects of bodies.

Bodies are not modeled in CPM.
4.Multiple lifting surfaces can be analyzed.
5.No thickness or camber effects are included in unsteady analyses so that lifting surfaces are analyzed as

flat plates.

8.2.2. Unsteady Aerodynamics Methodology

The essence of the unsteady aerodynamics methods resides in the development of three basic matrices
(see Subsection 17.5 of Reference 1):

w  =  A P (8-7)

w  =  D u (8-8)

F  =  S P (8-9)

where

w is the downwash (normal wash) at the aerodynamic control point

A is the aerodynamic influence matrix (ASTROS actually computes AT)

P is the pressure on the aerodynamic panel at the vortex line

D is a "Substantial differentiation" matrix

u are the displacements at the aerodynamic grid points

F are forces and moments at the aerodynamic grid points

S is an integration matrix

The goal of the unsteady aerodynamic theory is to determine the forces due to a given set of displace-
ments. Simply stated, this is done by first determining the downwash using Equation 8-8, then solving
for the pressure corresponding to this downwash using Equation 8-7 and a predetermined A matrix and,
finally, using Equation 8-9 to integrate the pressures over the panels to determine the forces. The details
of this development are substantially more involved and will not be presented here. In particular, the
development of the A matrix involves integrations of a kernel over the lifting surfaces. The presence of
bodies further complicates this evaluation. For purposes of this discussion, it suffices to say that the A

matrix is a function of both Mach number and reduced frequency k  =  
ω b
U

, where ω is the frequency of

oscillation, U is the free stream velocity and b is the length of a reference semi-chord). The D matrix is a
straightforward function of the panel geometry (with the exception noted in the following paragraph)
with real and imaginary components corresponding to the spatial and time derivatives of the displace-
ments. The S matrix is a simple function of geometry when only lifting surfaces are present, but becomes
a function of M and k when bodies are present and has a separate representation for subsonic and
supersonic Mach numbers.
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The implementation of the unsteady aerodynamics method occurs in two stages: (1) Generation of geome-
try and related information and (2) Generation of the aerodynamic matrices A, D, and S of Equations 8-7
through 8-9. The definitions associated with these equations specify three points for each panel: the
aerodynamic control point, the vortex line and the aerodynamic grid point. The location of each of these
points, as a percentage of panel chord, is given in Table 9. This information is key to the proper
generation of the S and D matrices. 

The application of the A, D, and S matrices requires further, discipline dependent, processing. Additional
relations that are required for this processing include:

ua  =  UG  us (8-10)

Fs  =  UG T  Fa (8-11)

us  =  Φ  qs (8-12)

Fq  =  Φ T  Fs (8-13)

In this idiosyncratic notation, the a subscript refers to aerodynamic degrees of freedom and s refers to
structural degrees of freedom.

Table 10 identifies all the terms used in Equations 8-7 through 8-13 and gives their dimensions, where
the sizes refer to:   

nj total number of aerodynamic panels

nk total number of degrees of freedom in the aerodynamic coordinate system

na number of degrees of freedom in the user’s analysis set

nm number of retained modes

The value of nk is typically two times nj, but bodies may add additional degrees of freedom. The spline
matrix, UG, is discussed in Subsection 8.3 while the normal modes are discussed in Subsection 7.2

For flutter and gust analyses, a generalized aerodynamic force matrix is computed for each Mach number
and reduced frequency:

Qhh  =  Φ T  UG T  S  A −1 D  UG  Φ (8-14)

POINT
METHOD

DOUBLET LATTICE CONSTANT PRESSURE

VORTEX 0.25 0.50

GRID 0.50 0.50

CONTROL 0.75 0.95

Table 8-1. Aerodynamic Panel Points
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The design loop of ASTROS makes it efficient to break this calculation into steps that are independent of

the structural design and those that are dependent. For example, the S A −1 D matrix is independent of
the structure and is therefore calculated once in the preface portion of ASTROS and is identified as Qkk.

The spline matrix is independent of the structure in the g-set, but goes through set reductions which
depend on the stiffness and therefore the reduced spline matrix is recalculated after each design. The
normal modes, of course, are a strong function of the design and are completely recalculated for each
design iteration.

Gust analyses, as discussed in Subsection 11.2.3, require an additional matrix for each Mach number and
reduced frequency:

Qhj  =  Φ T  UG T  S A −1 (8-15)

This matrix is also computed in stages, with S A −1 identified as Qkj.

MATRIX
NO. OF
 ROWS

NO. OF
COLUMNS

TYPE DESCRIPTION

Φ na nm Real Retained normal modes

UG nk na Real
Spline matrix relating aerodynamics to
structural dof’s

S nk nj Real Integration matrix

A nj nj Complex Aerodynamic influence matrix

D nj nk Complex Substantial derivative matrix

uS na 1 Complex Displacements at structural points

ua nk 1 Complex Displacements at aero grid points

qs nm 1 Complex Modal generalized coordinates

Fs na 1 Complex Forces at structural points

Fa nk 1 Complex Forces at aerodynamic grids

Fq nm 1 Complex Generalized forces

Table 8-2. Matrices For Unsteady Aerodynamic Forces
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8.3. CONNECTING AERODYNAMIC AND STRUCTURAL MODELS

The steady and unsteady aerodynamics quantities are computed at aerodynamic grids that typically do
not coincide with the structural grid points. The transfer of displacements and forces from one set of grids
to the other has been a troublesome task, with no universally accepted technique. ASTROS has imple-
mented three techniques, with the primary interconnection algorithms being the surface spline and beam
spline techniques of Reference 27 and Reference 1, respectively. A third algorithm performs a simple
equivalent force transformation from the aero panels to a specified structural grid. Each of these algo-
rithms is now discussed.

8.3.1. Surface Spline

The methodology associated with this spline is simple enough that its derivation, as given in Subsection
17.3.1 of Reference 1 is essentially repeated here.

A surface spline is used to find a function w(x, y) for all points (x, y) when w is known for a discrete set of
points, wi  =  w(xi, yi ). An infinite plate is introduced to solve for the total deflection pattern given

deflections at a discrete set of points. This surface spline is a smooth continuous function which is nearly
linear in x and y at large distances from the points (xi, yi ). Furthermore, the problem can be solved in

closed form.

The deflection of the plate is synthesized as the response due to a set of point loads on the infinite plate.
The response due to a single load is called a fundamental solution. The fundamental solutions have polar
symmetry. If the load is taken at xi = yi = 0, and polar coordinates are used x = r cos θ,   y = r sin θ the

governing differential equation is

D  ∇ 4 w  =  D 1
r
  

d
dr

 









  r  

d
dr

 

 
1
r

  
d
dr

  r 
dw
dr

 

  










  =  q (8-16)

The load q vanishes except near r = 0. A solution to the general spline problem, formed by super-imposing
solutions of Equation 8-16 is given by

w(x, y)  =  a0 + a1x + a2 y + ∑ 
i+1

N

 Ki(x,y) Pi (8-17)

where

Ki(x,y)  =  


1
16 π D




 ri

 2  ln  ri
 2,      ri

 2  =  (x − xi)
 2

  +  (y − yi)
 2

and

Pi  =  concentrated  at  xi  ,  yi



The N + 3 unknowns (a0, a1, a2, Pi,  i=1, N) are determined from the N + 3 equations
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∑  Pi  =  ∑  xi Pi  =  ∑ yi Pi  =  0

and

wj  =  a0 + a1 xj + a2 yj +  ∑ 
i=1

N

 Kij Pi      (j=1, N) (8-18)

where

Kij  =  Ki 
xj, yj 

Note that Kij  =  Kji, and that Kij  =  0 when i = j. The details of the derivation are given in Reference 27.

These equations can be summarized in matrix form

w (x, y)  =  

 1, x, y,   K1 (x, y) , K2 (x, y) , ..., KN (x, y) 


    

















 

a0
a1
a2

P1
P2
⋅
⋅

PN

 

















(8-19)

The vector of a’s and P’s is found by solving



















 

0

0

0

w1
w2
⋅
⋅

wN

  



















  =  























 

0

0
0

1

1
⋅
⋅
1

   

0

0

0

x1
x2
⋅
⋅

xN

   

0
0
0

y1
y2
⋅
⋅

yN

   

1

x1
y1

0

⋅
⋅
⋅

KN1

   

⋅
⋅
⋅

⋅
⋅
⋅
⋅
⋅

   

⋅
⋅
⋅

⋅
⋅
⋅
⋅
⋅

   

1
xN
yN

K1N
K2N

⋅
⋅
0

 























      



















 

a0
a1
a2

P1
P2
⋅
⋅

PN

 



















  =  C  P (8-20)

The interpolation to any point in the plane (x, y) is then achieved by evaluating w(x, y) from Equation
8-17 at the desired points. This gives an overall equation of the form:
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wa  =      















  

1
1
⋅
⋅
⋅
1

      

x 1a
x 2a

⋅
⋅
⋅

x na

   

y 1a
y 2a

⋅
⋅
⋅

y na

   

K 1a, 1
K 2a, 1

⋅
⋅
⋅

K na, 1

   

K 1a, 2
K 2a, 2

⋅
⋅
⋅

K na, 1 2

   

…
…

…

…

   

K 1a, n
K 2a, n

⋅
⋅
⋅

K na, n















     C −1   















 

0
0
0

w1
w2
⋅

wN

 















(8-21)

Slopes of the aerodynamic panels, which are the negative of the slopes of the displacements, are also
required. These can be determined by differentiating Equation 8-21 with respect to x:

α a  =  − 




∂w
∂x



 a

  =   − 















  

0

⋅
⋅
⋅
0

   

1

⋅
⋅
⋅
1

   

0

⋅
⋅
⋅
0

   

DK 1a, 1
⋅
⋅
⋅

DK na, 1

   

…

…

…

   

DK 1a, n
⋅
⋅
⋅

DK na, n















    C −1   















 

0

0

0
w1
⋅

wN

 















(8-22)

where

DKi,  j  =  
∂ki (xj, yi)

∂x
  =  





x − xi

8 π D




  


1 + nri

 2


(8-23)

8.3.2. Linear Spline

While linear splines may be solved by the three moment method, this technique does not work well for
splines with torsion, rigid arms and attachment springs. The following outline is based on an analogy
with the surface spline (see Section 17, Reference 1).

8.3.2.1. Linear Splines

The linear spline satisfies the equation:

EI 
d4w

dx4   =  q − dM
dx

(8-24)

where q is the applied load, and M is the applied moment. A symmetric fundamental solution for x ≠ 0  is
used for loads q  =  P δ(x)  , and an antisymmetric fundamental solution is used for moments. The solu-
tion for the general case is found by superimposing these fundamental solutions:

w(x)  =  ao + a1x + ∑ 
i = 1

N

 




 Mi ( x − xi )  x − xi
4EI

  +  
 Pi  x − xi

3

12EI
 




(8-25)
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θ(x)  =  
dw
dx

  =  a1 + ∑ 
i = 1

N

 




 Mi  x − xi
2EI

  +  
 Pi ( x − xi )  x − xi

4EI
 




(8-26)

These equations may be written in matrix form as:










 
w ( x )

θ ( x )
 









  =  













 
1   x

0   1

   

| x − x1 |3

12 E I
( x − x1 ) | x − x1 |

4 E I

   
…

…

   
−  

( x − x1 ) | x − x1 |

4 E I

−  
| x − x1 |

2 E I

   
…

…

 













  



















 

ao
a1
−−
P1
…
PN
−−
M1
…

MN

 



















(8-27)

The unknowns, a, Pi, and Mi, may then be found from:



















 

0

0
−−
w1
…
wN
−−
θ1
…
θN

 



















  =  












 

0

R1

R2

   

R1
T

A11

A21

   

R2
T

A21
T

A22

 












  



















 

ao
a1
−−
P1
…
PN
−−
M1
…

MN

 



















(8-28)

where it is assumed that the xi are monotonically increasing (i.e. x1  <  x2  <  …  <  xN ), and:

R1
T  =  




 
1

x1
    

1

x2
    

…
…    

1

xN
 




(8-29a)

R2
T  =  


 0
1
    0

1
    ……    0

1
 


(8-29b)
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A11  =  





















 

0

( x2 − x1 )3

12 E I

…

( xN − x1 )3

12 E I

    

( x2 − x1 )3

12 E I

0

…

( xN − x2 )3

12 E I

    

…

…

…

…

    

( xN − x1 )3

12 E I
( xN − x2 )3

12 E I

…

0

 




















(8-29c)

A21  =  





















 

0

( x2 − x1 )2

4 E I

…

( xN − x1 )2

4 E I

    

−  
( x2 − x1 )2

4 E I

0

…

( xN − x2 )2

4 E I

    

…

…

…

…

    

−  
( xN − x1 )2

4 E I

−  
( xN − x2 )2

4 E I

…

0

 





















(8-29d)

A22  =  



















 

0

( x2 − x1 )
2 E I

…

( xN − x1 )

2 E I

    

−  
( x2 − x1 )

2 E I

0

…

( xN − x2 )

2 E I

    

…

…

…

…

    

−  
( xN − x1 )

2 E I

−  
( xN − x2 )

2 E I

…

0

 



















(8-29e)

8.3.2.2. Torsion Bars

In the case of torsion bars, the differential equation is:

GJ 
d2θ

dx2  =  − T (8-30)

for which the solution is:

θ ( x )  =  



1   ,   

−  x1 − x 
2 G J

   ,   …   ,   
−  xN − x 

2 G J
 



  










 
ao

T
 










(8-31)
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











 

0
−−
θ1
…
θN

 













  =  

























 

0

1

1

…

1

    

1

0

− 

 x2 − x1  



2 G J

…

− 

 xN − x1  



2 G J

    

1

− 

 x2 − x1  



2 G J

0

…

− 

 xN − x2  



2 G J

    

…

…

…

…

…

    

1

− 

 xN − x1  



2 G J
− 


 xN − x2  



2 G J

…

0

 

























  =  













 

ao
−−
T1
…
TN

 













(8-32)

8.3.3. Attachment of Splines with Elastic Springs

The change in the formulas to accomodate the springs for both surface and beam splines is straightfor-
ward. The spline deflection, given by Equations (8-19),  (8-27) or (8-31)  can be written:

uk ( r )  =  R ( r ) a + Aj (r ) P (8-33)

where uk  is the deflection of the spline and r may be a one- or two-dimensional argument. Including the

equilibrium Equations  (8-28) or (8-32) results in:

Ri
T P  =  0 (8-34)

and

uk  =  Ri a + Aij P (8-35)

The structural deflection, ug , will differ from the spline deflection of the spring resulting in the forces:

P  =  Ks 


 ug − uk 


(8-36)

where the matrix, Ks , has the spring constant, k, along its diagonal. These are nonzero (otherwise there

would be no attachment and the grid point would be discarded) and thus the inverse of Ks  is simply:

K s
−1  =  














   

1
k

…

0

   

…

…

…

   

0

…

1
k

   















(8-37)
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Eliminating uk  from Equations (8-35) and (8-36) results in:

ug  =  Ri a +   
Aij + Ks

−1   P (8-38)

Thus, all that is required to accommodate springs is to add the spring flexibilities to the diagonal of the
spline influence coefficient matrix.

8.3.4. Rigid Arms on Splines

The linear splines used for geometry interpolation have rigid arms. Mathematically, these represent
equations of constraint between the displacements and rotations at the spline end and attachment end.
The constraint equations are used to transform the influence functions from the spline ends to influence
functions at the attachment ends. The complete transformed influence functions are given in the follow-
ing equations:

8.3.4.1. The A Matrix of Equation (8-33) for Surface Splines










 

uz
θx
θy

 










i

  =  























     

rij
2 ln  (rij

2 )

16 π D
 + 

δij

kz

( yi − yj )  1 + ln  (rij
2 



8 π D

( xi − xj ) 
 1 + ln  (rij

2 


8 π D

     























  Pj (8-39)

8.3.4.2. The R Matrix of Equation (8-33) for Surface and Linear Splines










 

uz
θx
θy

 










i

  =  










   

1

0

0
   

yi
1

0
   

−xi
0

1
   










 










 

uz
θx
θy

 










r

(8-40)
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8.3.4.3. The A Matrix of Equation (8-33) for Linear Splines










 

uz

θx

θy

 










i

  =  





















 

 

 yi − yj 

12 E I
  −  

xi xj 
 yi − yj 

2 G J
 + 

δij

kz



 yi − yj 

 (yi − yj )

4 E I

xj 
 yi − yj 

2 G J

       

−  



 yi − yj 

 (yi − yj )

4 E I

−  

 

 yi − yj 

2 E I
 + 

δij
kθx

0

       

xi 
 yi − yj 

2 G J

−  
( xN − x2 )

2 E I

−  

 

 yi − yj 

2 G J
 + 

δij

kθy

 





















  










 

pz
Mx
My

 










j

(8-41)

8.3.5. Equivalent Force Transfer

A second means of transferring loads from aerodynamic panels to the structure has been implemented for
the frequently encountered case where no structural model exists for a particular aerodynamic compo-
nent. The sketch of Figure 8-2 shows an example where the aerodynamic model contains a wing and
horizontal tail surface while only the wing is modeled for the structural design task. 

Figure 8-2. Application of ATTACH Option
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This is done when only wing structural design is of interest, but the aerodynamic trim requires the
determination of aerodynamic loads on the entire aircraft. The ATTACH bulk data entry of ASTROS
permits the transfer of the loads from the aerodynamic panels to a specified grid in the structural model.
This is done by a simple geometric transfer of the panel forces:

FR  =  ∑ 
i=1

NBOX

  Fi

MR  =  ∑ 
i=1

NBOX

  Ri   Fi

(8-42)

where the R subscript refers to the structural grid and the i subscript identifies the individual aerody-
namic box. The R matrix to compute the equivalent moments is simply:

Ri   =   















 

0



zi − zr

− 

yi − yR



      

− 

zi − zR



0



xi − xR



    



yi − yR



− 

xi − xR



0

 















(8-43)

The transformations of Equations 8-42 are integrated with the spline transformation of Equation
8-46 or 8-47 so that every aerodynamic load is transferred to the structure.

8.3.6. Use of Splines

The preface modules of ASTROS use the relations of Equations 8-21 and 8-22 to create the required
spline matrices. Steady and unsteady aerodynamics have different requirements and therefore different
splines are created. For unsteady aerodynamics, displacements and slopes are required at the aerody-
namic grid points so that the spline matrix interleaves results of Equations 8-21 and 8-22 to give a
matrix with the number of rows equal to two times the number of lifting surface panels. (Surface splines
are not used to compute displacements on body panels.) Symbolically

wa  =  UG ws (8-44)

where the a subscript refers to displacements and slopes at the aerodynamic grid points and the s
subscripts refers to  structural displacements. Conditions of virtual work can be applied to derive the fact
that the transpose of the UG matrix relates forces in the two sets:

Fs  =  UG T Fa (8-45)

where the Fa vectors contain forces and moments at the aerodynamic panel and Fs contains the out-of-

plane forces at the structural grid points.
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For steady aerodynamics, ASTROS has generated AIC matrices that relate forces on aerodynamic panels
due to slopes at the panel. Two separate matrices are generated in this case. The first utilizes Equation
8-22 to compute aerodynamic slopes:

αa  =  GS  ws (8-46)

while the second uses Equation 8-21 to compute structural forces:

Fs  =  G  Fa (8-47)
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Chapter 9.

STATIC AEROELASTIC ANALYSIS

The static aeroelastic analysis features in ASTROS provide the capability to analyze and design linear
structures in the presence of steady aerodynamic loading. This provides the ASTROS user with a self-
contained capability to compute loads experienced by a maneuvering aircraft and to redesign the struc-
ture based on these loads. The capabilities available for steady aerodynamics design include specifying
limits on (1) the allowable stress or strain response due to a specified trimmed maneuver, (2) the flexible
to rigid ratio of the aircraft’s lift curve slope, (3) the flexible roll control effectiveness of any antisymmet-
ric control surface and (4) the values of the flexible stability derivatives and trim parameters. This
Chapter first defines the basic equations used for static aeroelastic analyses and then contains individual
sections for each of the listed design aspects.

9.1. MATRIX EQUATIONS FOR STATIC AEROELASTIC ANALYSIS

The equations for static analysis given in Section 6.1 can be easily adapted for steady aerodynamic
analysis. In fact, Equations 6-1 through 6-9 are equally applicable to static and steady aerodynamic
analysis, since there is no interaction between mass, stiffness and aerodynamic terms in the reduction to
the f-set. Reduction of the aerodynamic forces to the a-set does require coupling with the stiffness matrix
so that it is at the f-set that the aerodynamic and structural stiffnesses are joined. The spline matrices of
Equations 8-25 and 8-26 do require reduction to the f-set and these reductions are similar to the reduc-
tion of the applied loads given in Equations 6-5 and 6-9:

Gjn
 T  =  G

__

jn
 T + TMN

 T  Gjm
 T


 Gs 


 jn

 T
  =  


 G
__

s 

 jn

 T
 + TMN

 T   Gs 

 jm

 T
(9-1)
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Gjf
 T  =  G

__

jf
 T



 Gs 


 jf

 T
  =   G

__

s 

 jf

 T
(9-2)

where the transposed matrices are used for convenience and the assumption is made that there are no
enforced displacements. The j subscript denotes the panels in the aerodynamic model.

The aerodynamic forces and influence coefficients of Section 8.1.2 are then applied to the structure
through the following splining relation:

P f
 a  =  q

__
 Gjf

 T  AIRFRC (9-3)

AICSff  =  q
__
 Gjf

 T  AIC    Gs 

jf

(9-4)

where

P f
a Unit aerodynamic loads matrix

AICS Aerodynamic influence coefficient matrix

q
__

Dynamic pressure

The aerodynamic terms are added to the structural terms to give:



 Kff −  AICSff 


 uf  +  Mff u

..
f  =  P f

a  δ (9-5)

where δ is a vector of configuration parameters, such as angle of attack and elevator angle. The δ vector
is explicitly defined for the symmetric and antisymmetric cases in Sections 9.3 and 9.4, respectively.

It is convenient to define a new matrix which is the difference of the structural and the aerodynamic
stiffnesses:

K ff
a  =  K ff −  AICS ff (9-6)

The reduction of Equation 9-5 to the l-set and r-set is very similar to the formulation of Equations 6-10
through 6-21 and this similarity is drawn on here.

Dynamic reduction of the steady aeroelastic equations is not supported. Guyan reduction may be per-
formed, and, if so, the relationships of Equations 6-11 and 6-12 are modified to account for the aerody-
namic stiffness:

u
..

o  =  −  K oo
a  

 −1
  K oa

a  u
..

a  =  G o
a u

..
a (9-7)

uo  =  

 K oo

a  


 −1
  P o

a δ  −   K oo
a  



 −1
  K oa

a  ua (9-8)

K aa
a  ua  +  Maa u

..
a  =  P a

a δ (9-9)
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where:

K aa
a   =  K

__
 aa
a  −  K ao

a  G o
a

P a
a  =  P

__
 a
a − K ao

a  

 K oo

a  


 −1
  P o

a

Maa  =  M
__

aa +  Moa G o
a +   G o

a 


 T
  Moa

 T  +  

 G o

a 


 T
  Moo  G o

a

(9-10)

Note that since the K a matrix is not symmetric, it is necessary to retain both the K oa
a  and K ao

a  portion

of this matrix for subsequent operations.

Equation 9-9 can be partitioned into r-set and l-set degrees of freedom:










 

K ll
a

K rl
a

  
K lr

a

K rr
a

 










   










 

ul

ur

 










  +  











Mll

Mrl

  
Mlr

Mrr










   










 

u
..

l

u
..

r

 










  =   










 
P l

a

P r
a
 










  δ (9-11)

As in the inertia relief formulation, u
..

l and u
..

r are related through the equation.

u
..

l  =  D  u
..

r (6-18)

Note that elastic accelerations are not treated in this formulation.

Just as was discussed in statics with inertial relief, the r-set contains degrees of freedom equal in number
to the number of rigid body modes in the structure. Static aeroelastic analysis differs from statics with
inertial relief in the way the r-set displacements are calculated. In statics, the r-set displacements are
arbitrarily set to zero. For static aeroelasticity, the a-set displacements are determined by requiring that
these elastic deformations be orthogonal to the rigid body motions. In terms of internal loads, these two
approaches are equivalent since only the elastic deformations produce these loads.

The orthogonality condition has been imposed to produce aerodynamic stability derivatives that are
independent of the degrees of freedom included in the r-set. A consequence of this revised formulation is
that inertia relief loads must always be included in the ASTROS static aeroelastic analysis whereas
statics can solve for elastic deformations for free bodies without considering the mass terms. This is in
consequence of the orthogonality condition, which requires the mass matrix in its specification.

The orthogonality constraint between elastic deformations and rigid body motions is specified by:


 D

 T I    










Mll

Mrl

  

Mlr

Mrr










   










 
ul

ur

 










  =  0 (9-12)

If Equation 6-18 and the orthogonality condition of Equation 9-12 are inserted into Equation 9-11, the
resulting equation is
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















  

K ll
a

K rl
a

D TMll + Mrl

    

K lr
a

K rr
a

D TMlr + Mrr

    

Mll D + Mlr

Mrl D + Mrr

0

  

















     













 

ul

ur

u
..

r

 













  =   













 

P l
a

P r
a

0

 













  δ (9-13)

These equations can be solved in a variety of ways, with a particular algorithm entailing multiplying the

first row of Equation 9-13 by D T and adding it to the second row. This new second row is interchanged
with the third equation to give the following system:















K ll
a

D T Mll + Mrl

 D TK ll
a + K rl

a

    

K lr
a

D T Mlr + Mrr

D TK lr
a  + K rr

a

    

Mll D + Mlr 

0

mr















     













 

ul

ur

u
..

r

 













  =   













P l
a

0

 D T P l
a + P r

a













  δ (9-14)

where mr is the reduced mass matrix of Equation 6-21 and, unlike the static analysis equation of

Equation 6-20, the R 31 and R 32 terms of Equation 9-14 have nonzero contributions from the aerody-

namic corrections.

Equation 9-14 is redefined in order to simplify the notation based on the partitions given in the equation:














  

R11

R21

R31

   

R12

R22

R32

   

R13

R23

R33

  














   













 

ul

ur

u
..

r

 













   =   













 

P l
a

0

D T P l
a  +  P r

a

 













  δ (9-15)

Then, one possible solution algorithm involves merging the matrices into










 

K
__

11

K
__

21

  

K
__

12

K
__

22

 










   










 

u
__

1

u
__

2

 










   =   










 

P
__

1

P
__

2

 










  δ (9-15a)

K
__

11   =   










R11

R21

  

R12

R22










(9-15b)

K
__

12   =   R13 (9-15c)

K
__

21   =   

R31  R32 


(9-15d)

K
__

22   =   R33 (9-15e)
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u
__

1   =   ua   =   



 
ul
ur

 




(9-15f)

u
__

2   =   u
..

r (9-15g)

P
__

1   =   



 
P l

a

0
 




(9-15h)

P
__

2   =   D T P l
a  +  P r

a (9-15i)

The first row of Equation 9-15a can be solved for u
__

1 in terms of δ and u
__

2 to give

u
__

1  =  K
__

11
 −1  


 P
__

1  δ − K
__

12 u
__

2 


(9-16)

Equation 9-16 requires the decomposition of the K
__

11 matrix.

While the R11 partition of the K
__

11 matrix is asymmetric, it is also very sparse and reasonably well

banded (assuming that the structural stiffness, Kaa is banded ) and the asymmetries and unbandedness

are only associated with those degrees of freedom to which the aeroelastic correction matrix have been
splined. Unfortunately, the orthogonality criterion introduces one row for each support degree of freedom
that is fully coupled. Thus the K

__

11 matrix has a topology like: 

This topology results in very poor performance in the solution of 9-16. As a result the trim equations 9-15
are solved in a slightly different order to allow the R11 matrix to be decomposed rather than the K

__

11

matrix. 

Solving for ul from the first row of:

ul  =  R11
 −1   


 P l

a  δ − R12 ur  −  R13 u
..

r 



(9-17)

and substituting for ul  in the second and third rows, we obtain the trim equations in the same form as

Equation 9-15a, except that u1 contains only the rigid body displacements. The flexible displacements

must then be computed from equation 9-17. This is detailed below.

B
  A

    N
      D

       E
        D

FULL
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









K11

K21

  

K12

K22










   










 

u1

u2

 










   =   










 

P1

P2

 










   



δ




(9-17a)

K11  =  R22  −  R21  R11
 −1  R12 (9-17b)

K12  =  R23  −  R21  R11
 −1  R13 (9-17c)

K21  =  R32  −  R31  R11
 −1  R12 (9-17d)

K22  =  R33  −  R31  R11
 −1  R13 (9-17e)

P1  =  −  R21 R11
 −1  PA l (9-17f)

P2  =  D T P l
a  +  P r

a  −  R31 R11
 −1  P l

a (9-17g)

u1  =  ur (9-17h)

u2  =  u
..

r (9-17i)

As in the previous formulation

u1  =  K11
 −1  


 P1 δ  −  K12 u2 


(9-18)

and upon substitution into 9-17a:



 K22 − K21 K11

 −1 K12 

  u2   =  


 P2 − K21 K11

 −1 P1 

  δ (9-19)

While the formulation still involves an inversion of K11 , (in addition to R11) that matrix is now an r x r

matrix rather than (a + r) x (a + r). The inversion of R11 can be performed relatively efficiently. 

Equation 9-19 is the basic equation for static aeroelastic analysis. There is one equation in 9-19 for each
rigid body degree of freedom. In general, then, nr unknowns can be determined from these equations. The
u2 vector is the vector of structural accelerations at the support point (in the global coordinate system)

and the δ vector is a vector of trim parameters. The user is free to pick any number of fixed values of u2

or δ  rows and exactly nr free values to be determined by the solution of Equation 9-19. Symmetric and
antisymmetric analyses limit the set of accelerations and configuration parameters. If Equation 9-19 is
partitioned into free and known values:

L u2  =  R δ (9-20)

where:
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L  =  K22  −  K21 K11
 −1 K12 (9-20a)

R  =  P2  −  K21 K11
 −1 P1 (9-20b)

partitioning yields:










 

Lff

Lkf

    

Lfk

Lkk

 









    










 

u2f

u2k

 










   =   










 

Rfu

Rku

    

Rfs

Rks

 









   










 

δu

δs

 









(9-21)

where the f and u subscripts denote free (or unknown) values and the k and s subscripts denote known
(or set) values of accelerations and trim parameters, respectively. Rearranging to place free values at the
left:










 

Lff

Lkf

   

− Rfu

− Rku

 










   










 

u2f

δu

 









  =  











 − Lfk

 − Lkk

   

Rfs

Rks

 










   










 

u2k

δs

 









(9-22)

The set of values that can participate in Equation 9-22 is a function of ASTROS and the user’s model.
There are six rigid body accelerations, which in ASTROS have been given the names

u2  ∈  













 

NX
NY
NZ

PACCEL
QACCEL
RACCEL

 













The δ vector has a number of predefined components and the user can add components by defining
control surfaces. Thus, δ can be viewed as:

δ   ∈   

















 

THKCAM   −   thickness  & camber
ALPHA     −   angle of attack
BETA    −   yaw angle
PRATE    −   roll rate
QRATE    −   pitch rate
RRATE    −   yaw rate



δsym




    −   symmetric surfaces




δanti




    −   antisymmetric surfaces

 

















Notice that GAMMA, the roll angle, is not available since it can produce no forces using the ASTROS
aerodynamics method. Sections 9.3 and 9.4 discuss particular applications of this equation for the sym-
metric and antisymmetric cases.
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9.2.  STABILITY DERIVATIVES

Since the aeroelastic stability derivatives form an important set of data used to generate design con-
straints, ASTROS computes stability derivatives for each trim analysis that is performed. Although the
stability derivatives are, using the ASTROS aerodynamics, a function only of Mach number and dynamic
pressure, user input effectiveness values can cause the stability derivatives to vary from case to case.

Equation 9-19 can be used to compute the stability derivatives by realizing that, using an identity matrix
for δ, the resulting u2 terms are the accelerations of the flexible vehicle due to unit parameters. Using the

mr matrix, the forces and moments can then be found.

F  =  mr  



  K22 − K21 K11

 −1 K12 

 −1


 P2 − K21 K11

 −1 P1  




(9-23)

F has one row for each supported degree of freedom and one column for each configuration parameter.
Normalizing F to a nondimensional derivative must account for forces and moments and handle rate
parameters as enumerated below:

F  ∈  










  

Fx
Fy
Fz

  










  =  










  
THRUST ⁄ DRAG
SIDE FORCE
LIFT

 









  or  F  ∈  










  

Mx
My
Mz

  










  =  










  
ROLL MOMENT
PITCH MOMENT
YAW MOMENT

 










for forces, the nondimensional stability derivatives are �

CONTROL SURFACES RATE PARAMETERS

 CD  =  
2 Fx

q
__
 S

CD  =  
4 Fx

q
__
 S c

(9-24a)

CS  =  
2 Fy

q
__
 S

CS  =  
4 Fy

q
__
 S b

(9-24b)

CL  =  
2 Fz

q
__
 S

CL  =  
4 Fz

q
__
 S c

(9-24c)

C
�
  =  

2 Mx

q
__
 S b

C
�
  =  

4 Mx

q
__
 S b2 (9-24d)

Cm  =  
2 My

q
__
 S c

Cm  =  
4 My

q
__
 S c2 (9-24e)

Cy  =  
2 Mz

q
__
 S b

Cy  =  
4 Mz

q
__
 S b2 (9-24f)
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9.2.1. Restrained and Unrestrained Stability Derivatives

The F vector of Equation 9-23 is derived using the orthogonality criterion of Equation 9-12. This produces
forces that are independent of the r-set. It also includes terms associated with inertia relief effects. The
resultant stability derivatives are termed unrestrained since they represent the value associated with
the free aircraft. If the orthogonality criterion is removed from Equation 9-14 and the trim equations are
solved again using the standard ur  ≡  0 to remove the singularities we obtain:










  

R11

R31

   

R13

R33

  










   










 

ul
 R

u
..

r
 R

 










   =   










  

P l
a

D TP l
a  +  P r

a

  










    δ (9-25)

using the first row to eliminate ul, we obtain our restrained trim equations:

u l
 R  =  R11

 −1  

  P l

a δ  −  R13 u
..

 r
 R  


(9-26a)



 R33  −  R31 R11

 −1  R13 

 u
..

r
 R  =  


  D T P l

a  +  P r
a  −  R31  R11

 −1  P l
a  


  δ (9-26b)

Again using the method of computing the accelerations due to unit δ values and premultiplying by mr to

obtain forces, we can compute the restrained values of F, denoted FR.

FR  =  mr  

  R33 − R31  R11

 −1  R13  

 −1
    D

 T P l
a  +  P r

a − R31  R11
 −1  P l

a   (9-27)

by inspection, we can convert Equation 9-27 into Kij notation:

FR  =  mr  K 22
−1   P2 (9-28)

compared with the unrestrained values

F  =  mr  

  K22 − K21 K11

 −1 K12  


 −1
  


  P2 − K21 K11

 −1  P1  


(9-23)

Given one set of derivatives, the other set can be computed:

FR  =  F  +  mr  K22
 −1  K21  K11

 −1  P1  −  mr  K22
 −1  K21  K11

 −1  K12  u
..

r (9-29)

In this instance, the u
..

r values are those associated with the unrestrained accelerations due to unit

parameters. A similar expression can be obtained using the restrained accelerations.

These restrained coefficients, FR , include inertia relief effects, however. These effects appear in the  K22

matrix.

K22  =  R33  −  R31  R11
 −1  R13  =  mr  −  inertia relief (9-17e)
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Since the calculation method multiplies K22
 −1 by mr, one can see that the restrained stability derivatives

without inertia relief can be computed as:

FR
NI

  =  P2  =  D T  P l
a  +  P r

a  −  R31  R11
 −1  P l

a (9-30)

Finally, one can revisit the unrestrained stability derivatives and separate the inertia relief components
from the overall stability derivative. To do so we must examine Equation 9-23 and look at only the
applied forces and omitting any force modifier associated with u

..
r we then obtain:

FNI  =  P2  −  K21  K11
 −1  P1 (9-31)

The inertia relief effect can be derived from 9-17a (expanded) as shown: (the shaded terms are the inertia
relief modifiers)












 



 R22 − R21 R11

 −1 R12 



 R32 − R31  R11

 −1 R12 

   

− R21 R11
 −1 R13





R33 − R31 R11

 −1 R13



 












  










 

ur

u
..

r

 










  =  










  

−R21 R11
 −1 P l

a

D T P l
a + P r

a − R31 R11
 −1 P l

a 
  










  δ (9-32)

Finertia  =  + 

 R21  R11

 −1  R13  +  R31  R11
 −1  R13 


  u

..
r (9-33a)

=  

 − K12  − K22  +  R33 


  u

..
r (9-33b)

Where u
..

r are the accelerations due to unit parameters from the unrestrained formulation:

u
..

r  =  
 K22  −  K21  K11

 −1  K12 
 −1

   P2  −  K21  K11
 −1  P1  (9-34)

In summary, there are four varieties of stability derivatives that can be examined. In ASTROS, they are
each derived from a dimensional force vector using the nondimensionalizing Equation 9-24. The force
vectors themselves are:

Unrestrained (Orthogonality and Inertia Relief) :F from Equation 9-23.

Restrained (Orthogonality, no Inertia Relief) : FNI from Equation 9-31.

Supported (no Orthogonality, but Inertia Relief) : FR from Equation 9-28.

Fixed (neither Orthogonality nor Inertia Relief) : FRNI from Equation 9-30.

In ASTROS, the values of certain constraints use the unrestrained coefficients while others use the
restrained values. The supported and fixed values are not used since their value in strongly controlled by
the location of the support point.
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9.3. SYMMETRIC ANALYSES

Symmetric steady aerodynamic analyses are applied in ASTROS for longitudinal trim and subsequent
stress analysis and for analysis and design of an aircraft’s symmetric aeroelastic and trim parameters
and aeroelastic stability derivatives. For symmetric analyses, the δ vector has up to three predefined
components and any number of user parameters and the u2 vector can have up to three predetermined

components.:

δ   ∈   










 

THKCAM  
ALPHA
QRATE 



δ sym















u2  ∈  



 

NX
NZ

QACCEL
 




Thickness and camber effects refer to the airloads produced when the other members are zero and can be
thought of as giving zero angle-of-attack effects. The value of this term is typically 1.0. The pitch control
surfaces govern the motion of the aerodynamic panels that trim the pitching moment of the aircraft. These
could represent an elevator or an all moving stabilizer on a canard or tail surface. These terms are designated
as δsym. Pitch rate (QRATE) is designated as q, while the angle of attack parameter (ALPHA) is denoted by α.

9.3.1. Trim Analysis

For the trim analysis, Equation 9-22 is solved for u2f and δu. The u2f and δu vectors have between them as

many terms as there are in the r-set (nr). u2 and δ  are then obtained by merging the known values with

the computed values.

Given the values for the u2 and δ vectors, the recovery of the elastic deformations is straightforward. The

u1 vector of Equation 9-17a is the ur vector of Equation 9-14. Flexible deformations are then recovered

using Equation 9-17 while the l-set accelerations are computed using Equation 6-18. Further recovery of
the omitted degrees of freedom and the single and multiple point constraints proceeds as detailed in
Section 6.1. One difference from that formulation is in how loads applied to omitted degrees of freedom
affect the omitted displacements. These aerodynamic loads are computed using

Po  =  P o
a  δ (9-35)

where P o
a  is the matrix of rigid aerodynamic loads on the omitted degrees of freedom and δ is the vector

of trim parameters determined during the trim process. These omitted loads are then used to recover
omitted displacements in the standard fashion:

uo
 o  =  


 K oo

a  


 −1
 



 Po −   Moo G o

a + Moa 


  ua 





(9-36)
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uo  =  G o
a ua  +  uo

 o (9-37a)

u
..

o  =  G o
a u

..
a (9-37b)

where G o
a is defined in Equation 9-7.

Recovery of accelerations and displacements in the f-set and g-set proceeds normally. Given the displace-
ments in the g-set, displacement constraints can be calculated and Equation 6-28 can be used to recover
the components used in computing strength constraints.

9.3.2. Lift Effectiveness Constraint

The lift effectiveness constraint in ASTROS places bounds on the ratio of the flexible to rigid lift curve
slope of the aircraft

εmin  ≤  

CL
α

f

CLα
R

  ≤  εmax (4-27)

Section 4.5.2.4 defines the terms used in this equation.

Equation 9-23 outlines the basic approach to evaluate this constraint. Conceptually, the flexible lift curve
slope is obtained by setting the term corresponding to the angle of attack in the δ  vector to unity and the
remaining terms in the vector to zero and then determining the resulting values of u2. These are the

accelerations of the aircraft and, when multiplied by the matrix mr, give the force and moment acting on

the structure. These can then be nondimensionalized to stability derivatives with the force term translat-
ing to the lift derivative. In mathematical terms:

q
__
S
2

    










 

CL
α

f

c Cmα
f

 










  =  mr  

K22 − K21 K11
 −1 K12


 −1

    
P2 − K21 K11

 −1  P1    
 δα  =  F δα (9-38)

Where δα is the configuration vector δ with a unit value of the angle of attack, S is the wing reference

area, c is the wing reference chord and the CL value is associated with the vertical translation DOF of the

supported point, while Cm is associated with the pitch rotation DOF. The factor of two on the left-hand

side of Equation 9-38 is due to the fact that the right-hand side equations account for only one side of the
aircraft.

Rigid stability derivatives are determined from a less complex matrix equation:

q
__
S
2

    










 

CLα
R

c Cm
α

R

 










  =  P2  δα  =  FR

NI
 δα (9-39)

The lift effectiveness constraint is calculated using
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g =  a + b ε (9-40)

where ε is the flexible to rigid ratio of Equation 9-38. The a and b coefficients are listed in Table 9-1 for
upper and lower bound constraints and required effectiveness values (εreq) that are positive, negative or

zero.

Specification of upper bound limits on the effectiveness and negative and zero values of the required
effectiveness have been included for completeness. It is anticipated that these particular features will
rarely be used.

9.3.3. Flexible Stability Derivatives

A general extension of Equation 9-38 can be used to compute the flexible stability derivative with respect
to any aerodynamic parameter. This has already been presented in Equations 9-23 and 9-24. The only
components of the general F matrix that can be computed are those rows associated with supported
degrees of freedom. Then the constraint:




 

∂CF

∂δtrim
 


lower

  ≤  
∂CF

∂δtrim
  ≤  




 

∂CF

∂δtrim
 


upper

(4-30)

can easily be evaluated using the method of Table 9-1 where εreq  is the upper or lower bound as

appropriate.

9.3.4. Trim Parameter Constraint

A constraint on any row of u
..

r  or δ  may also be imposed using Equation 4-31. These data are obtained

from the u2  ( ≡  u
..

r ) and δ  vectors that are recovered after the solution of Equation 9-22. Obviously,

constraining a component of u2
k
  or δs  would result in an error since they are fixed with respect to design.

Again, a constraint of the type shown in Table 9-1 is formed where εreq  is the user-specified bound.

SIGN OF
εreq

CONSTRAINT TYPE

UPPER LOWER

a b a b

POS - 1.0
1

εreq
1.0 − 

1
εreq

NEG 1.0 − 
1

εreq
- 1.0

1
εreq

ZERO 0.0 1.0 1.0 - 1.0

Table 9-1. Lift Effectiveness Constraint Coefficients
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9.4. ANTISYMMETRIC ANALYSES

Antisymmetric steady aerodynamic analyses are applied in ASTROS for the analysis and design of an
aircraft’s roll performance. For antisymmetric analyses, the ul  and  δ vectors of Equation 9-19 have the

following general forms:

δ   ∈   










 

BETA  
PRATE
RRATE 



 δ anti 














u2  ∈  




  

NY
PACCEL
RACCEL

  




9.4.1. Trim Analysis

The antisymmetric trim analysis follows exactly the symmetric trim analysis and recovery operations
that are outlined in Section 9.3.1.

9.4.2. Aileron Effectiveness Constraint

Roll performance requirements frequently drive the design of aircraft wing structures. This factor has
been recognized in ASTROS by the incorporation of an aileron effectiveness constraint. Aileron effective-
ness, following terminology used in Reference 9 can be defined as the ratio of roll due to aileron deflection
over roll due to roll rate:

εeff  =  − 




C

� 
δ
a





 f




C

� pb
2V





 f (4-28)

where Section 4.5.2.5 provides a definition of the terms used in this equation.

The effectiveness parameter is as a measure of the steady state roll rate achievable for a unit value of
aileron deflection. In a manner similar to the lift effectiveness, the user can specify that the aileron
effectiveness be within a specified range:

εmin  ≤  εeff  ≤  εmax (9-41)

The stability derivatives required by Equation 4-28 can be determined using the right-hand side of
Equation 9-19. The left-hand side of Equation 9-19 does not enter into this computation due to the
specification that the effectiveness is computed for steady state roll (i.e., roll acceleration and therefore,
u2, is zero). Explicitly, the right-hand side of Equations 9-19 is:

q
__
 S b
2

  C
� δ

a

  =   P2 − K21 K11
 −1 P1    δail  =  FNI δail (9-42)

q
__
 S b 2

4
  C

� pb
2V

  =   P2 − K21 K11
 −1 P1   

 δp  =  FNI δp (9-43)
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where δail and δp are configuration vectors with unit values of aileron deflection and nondimensional roll

rate, respectively, and FNI  is defined in Equation 9-31. The columns of rigid aerodynamic loads for the

roll rate contained in P2 and P1 are computed for 
p
V

  =  1.0. For this reason, an additional 
b
2

 factor is

required in the multiplication of the nondimensional stability derivative in Equation 9-43.

Given the stability derivatives of Equations 9-42 and 9-43, Equation 4-28 is used to determine the aileron
effectiveness. The evaluation of the constraint is similar to that of Equation 9-40 and Table 9-1 with
Equation 4-28 used for ε .

9.4.3. Flexible Stability Derivative Constraint

The formulation of 9.3.3 holds for antisymmetric analysis and is used without modification.

9.4.4. Trim Parameter Constraint

The formulation of 9.3.4 holds for antisymmetric analysis and is used without modification.

9.5. SENSITIVITY ANALYSIS

Calculation of gradient information for static aeroelasticity is quite similar to the derivation for static
analysis sensitivities given in Section 6.3. This similarity is enhanced by the fact that the aerodynamic
matrices of Equations 9-3 and 9-4 are invariant with respect to changes in the structural design. Finally,
the δ vector sensitivity needs to be computed only as part of the trim analysis sensitivity and trim
parameter constraint sensitivity calculations since δ is fixed for effectiveness calculations.

The meaning of a displacement set also varies, depending on the design condition. For the trim analysis,
the displacements have the standard physical meaning of deformations induced by the specified flight
condition. For the effectiveness constraints, these displacements give the deformation that would result
from δα, δail, and δp (see Equations 9-38, 9-42, and 9-43). There is also an acceleration vector that results

from the unit angle of attack. These displacements and accelerations for the effectiveness constraints
have minimal physical meaning, but their calculation is required to perform the sensitivity analysis.

With these remarks, the sensitivity of Equation 9-6 with respect to the i th design variable in the f-set of
displacements is

K ff
a  

uf

∂vi
  +  Mff  

u
..

f

∂vi
  =  P f

a  
∂δ

∂vi
 + 

∂Rf

∂vi
(9-44)

where 
∂Rf
∂vi

 has been defined following Equation 6-46.

For steady aerodynamic analyses, gravity and thermal loads are not allowed so that only the last two

terms of Equation 6-37 contribute to 
∂Rf
∂vi

 (i.e., only the stiffness and mass sensitivity values).

The orthogonality condition of Equation 9-12 requires a further sensitivity calculation. The sensitivity of
this equation is:
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−  D   I 
 T

  



 
Mll
Mrl

   
Mlr
Mrr

 



   













 

∂ul

∂vi
∂ur

∂vi

 













  =  −  D   I 
 T

  













 

∂Mll

∂vi
∂Mrl

∂vi

   

∂Mlr
∂vi

∂Mrr

∂vi

 













   



 
ul
ur

 




(9-45)

where the fact that D is invariant with respect to the design variable is used. This equation is ultimately
included as a constraint in the solution of the sensitivity of Equation 9-14. To assemble the necessary
partitions, we start with:

∂R g
o

∂v
  ≡    

∂Mgg

∂vi
 ug (9-46)

The reduction of this vector to the n-set follows that given for applied loads:

∂R n
o

∂vi
  =  

∂R 

___

n
o

∂vi
  +  T mn

T  
∂R m

o

∂vi
(9-47)

The single point constraints are removed by a partition of the n-set vectors to give 
∂Rf

o

∂vi
 while the omitted

degrees of freedom contribute to the a-set:

∂R a
o

∂vi
  =  

∂R 

___

a
o

∂vi
  +  Go 

∂R o
o

∂vi
(9-48)

The pseudo-load vectors can be further partitoned into the l-set and r-set and an equation equivalent to
that of Equation 9-12 can be written:
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













K ll
a

D T Mll + Mrl

 D TK ll
a + K rl

a

    

K lr
a

D T Mlr + Mrr

D TK lr
a  + K rr

a

    

Mll D + Mlr 

0

mr















   















  

∂ul
∂vi
∂ur

∂vi
∂u

..
r

∂vi

 















   =

                                 














P l
a

0

 D T P l
a + P r

a














  
∂δδ
∂vi

  +  

















 

∂Rl

∂vi

D T 
∂R l

o

∂vi
 + 

∂R r
o

∂vi

 D T 
∂Rl

∂vi
 + 

∂Rr

∂vi

 

















(9-49)

This equation can be rewritten, using the notation of 9-17a to become










 

K11

K21

  
K12

K22

 









   













 

∂u1
∂vi

∂u2

∂vi

 













i

   =  










 

P1

P2

 










  

∂δδ
∂vi

  +  













 

∂R1

∂vi

∂R2

∂vi

 













i

(9-50)

where  
∂ul

∂v
 must be recovered from

∂ul

∂v
  =  R11

 −1  



P l

a  
∂δδ

∂v i
  +  

∂Rl

∂v
  −  

∂R12

∂v
  

∂ur

∂v
  −  R13  

∂u
..

r
∂v




 (9-51)

Equation 9-50 is the corollary to Equation 9-17a and is the basic equation for sensitivity analysis.
Performing the evaluation of Equation 9-50 requires a rearrangement similar to that which occurs in
Equations 9-20 to 9-22. The unknown values (either trim parameters, δ, or accelerations, u2 have sensi-

tivity values while those that have been fixed do not. Using the notation of Equation 9-22, the basic
evaluated trim sensitivities are 



 K22 − K21 K11

 −1 K12 

  

∂u2

∂vi
  =  


 P2 −  K21 K11

 −1 P1 

 
∂δδ

∂vi
 + 

∂R2

∂vi
 − K21 K11

 −1 
∂R1

∂vi
(9-52)

notice the L and R of Equation 9-20 appear here as well and need not be recomputed. Partitioning and
rearranging the unknown sensitivities to the left hand side:
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


 
Lff
Lkf

  
Rfu
Rku 




  













 

∂u2f

∂vi
∂δδu

∂vi

 













  =   













 

∂P2f
∂vi

∂P2k

∂vi

 













  −  















 




 K21 K11

 −1 
∂P1

∂vi




f




 K21 K11

 −1 
∂P1

∂vi




k















(9-53)

where the zero derivative of the known fixed parameters has been exploited.

9.5.1. Trim Sensitivity Analysis

The basic trim sensitivity analysis involves the solution of Equation 9-53 for
∂u2f

∂vi
 and 

∂δu

∂vi
 . The vectors

∂u2

∂vi
 and 

∂δ
∂vi

 are then obtained by merging the zero-valued sensitivities associated with the fixed parame-

ters. For strength constraints, the sensitivities of the displacements must be recovered. The flexible
displacement sensitivities are obtained using Equation 9-51, nothing that u1  ≡    ur  and  u2  ≡    u

..
r  . The

f-set sensitivities are computed by merging o-set and a-set sensitivities, where the o-set displacement
sensitivities are obtained from:

∂uo

∂vi
  =  G o

a 
∂ua

∂vi
  +  


Koo

a 


 −1
 Po

a  
∂δ
∂vi

(9-54)

Further recovery to the f-set is a merge operation with the single point degrees of freedom. Equation 6-53
can then be used to complete the sensitivity analysis for strength and displacement constraints with
steady aerodynmaics.

9.5.2. Lift Effectiveness Sensitivity

The calculation of the lift effectiveness sensitivity is most understandable if the third row of Equation
9-15 is used to compute the flexible lift curve slope:

q
__
S
2

    

CLα
f

Cmα
f

  =  mr  u
..

r  =   D
T Pl

a + Pr
a 


 δα − R31 ul

α
 − R32 ur

α
(9-55)

where 









 
ulα

ur
α

 









 is the pseudo-deformation that results when the δα vector is applied to the free-free aircraft.

The sensitivity of Equation 9-51 gives:
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q
__
S
2

    













 

CLα
f

∂v
  

Cm
α

f

∂v

 













 i

  =  −  R31    R32 

  













 

∂ul
 α

∂ v
∂ur

 α

∂ v

 













 i

(9-56)

Note that P2, δα , R31 and R32 are invariant with respect to the design variable. The R31 and R32

matrices are invariant because the stiffness terms that are contained in this matrix (as defined by

Equation 9-14) sum to zero, leaving only the design independent aerodynamic terms. To determine 
∂ua

 δ

∂v
,

it is necessary to revisit Equation 9-50 and set 
∂δ
∂v

to zero to obtain











K11

K21

  

K12

K22










   















 

∂ur
α

∂vi

∂ur
α

∂vi

 















   =   















 

∂R1
α

∂vi

∂R2
α

∂vi

 















(9-57)

The first row of this equation gives

∂ur
α

∂vi
  =  K11

 −1  






 
∂R1

α

∂vi
 − K12  

∂ur
α

∂vi
 







(9-58)

and this is substituted into  the second row of Equation 9-53 and rearranged to give:


 K22 − K21 K11

 −1 K12 
  

∂u
..

r
α

∂vi
  =  

∂R2
α

∂vi
 − K21 K11

 −1  
∂R1

α

∂vi
(9-59)

After solving Equation 9-59 for 
∂u

..
r
α

∂vi
, Equation 9-58 can be used to determine 

∂ur
α

∂vi
 and Equation 9-56 is

used to solve for the sensitivity of the stability derivative, and Equation 9-51 can be used to recover 
∂ul

α

∂vi
.

9.5.3. Aileron Effectiveness Sensitivity

In a manner similar to the lift effectiveness constraints, a more understandable formulation of the
aileron effectiveness sensitivity can be gained by rewriting Equations 9-42 and 9-43

q
__
 S b
2

  C
� 

δ
a

  =  

 DT P l

a + P r
a 


 δ ail − R 31 u l

ail − R 32 u r
ail (9-60)
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q
__
 S b 2

4
  C

� pb
2V

  =  

 DT P l

a + P r
a 


 δ p − R 31 u l

p − R 32 u r
p (9-61)

where ul
 ail , ur

 ail , ul
 p  and ur

 p  are the pseudo-deformations that result when the unit control surface,

δail , and unit roll rate δp  vectors are applied, respectively. The sensitivity calculation therefore, requires

the calculation and recovery to the g-set of these additional displacement vectors. The sensitivity of these
stability derivatives are simply:

 
∂C

� δ a

∂vi
  =  −  

2
qSb

    R31    R32   













 

∂ul
 ail

∂vi

∂ur
 ail

∂vi

 













(9-62)

 

∂ C
� pb

2V

∂vi
  =  − 

4
qSb

    R31    R32   













 

∂ul
 p

∂vi

∂ur
 p

∂vi

 













(9-63)

where the 
∂ua

ail

∂vi
 and 

∂ua
p

∂vi
 vectors are the sensitivity of the pseudo displacements to the design variables

and are calculated from Equation 9-52 using:

∂ur
ail

∂vi
  =  K11

 −1  
∂R 1

ail

∂vi
(9-64)

∂ur
p

∂vi
  =  K11

 −1  
∂R 1

p

∂vi
(9-65)

where the 
∂R 1

ail

∂vi
 and 

∂R 1
p

∂vi
 vectors are obtained from the pseudo-load vectors based on the pseudo-

displacements. The simplified form of Equation 9-54 results from the fact that the 
∂u

..
r

∂vi
 and 

∂δδ
∂vi

 vectors are

null for the steady-state roll case.
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9.5.4. Flexible Stability Derivative Sensitivities

A generalization of the approach used for lift effectiveness allows the computation of the sensitivities of
flexible stability derivatives based on the displacements and accelerations that result from the solution of
the trim equation for a unit value of the associated parameter with all other parameters set to zero. The

pseudo-displacements are then used in the computation of 
∂R param

∂vi
, which is formed:

∂R param

∂vi
  =  −  

∂Kgg

∂vi
 u g

param − 
∂Mgg

∂vi
 u 
..

g
param (9-66)

along with a similar modification of Equation 9-46:

∂R g
o

∂vi
  =  

∂Mgg

∂vi
 u g

param (9-67)

Then Equation 9-52 can be used, with 
∂δδ param

∂vi
  ≡   0 , to obtain the sensitivity of the resultant rigid body

accelerations:


 K22 − K21 K11

 −1 K12   
∂u

..
 r
param

∂vi
  =   

∂R 2
param

∂vi
 − K21 K11

 −1 
∂R 1

param

∂vi
(9-68)

and subsequently, using the design invariance of R31  and R32  , and Equations 9-58 and 9-23:

∂F
∂vi

  =  −  

 R31    R32 


  













 

∂u l
 param

∂vi

∂u r
 param

∂vi

 













(9-69)

from which any flexible stability derivative sensitivity, symmetric or antisymmetric, may be computed.

9.5.5. Trim Parameter Sensitivity

The solution of Equations 9-53, followed by the merging of the computed sensitivities of the fixed

parameters results in the evaluation of 
∂u

..
r

∂vi
 and 

∂δ
∂vi

 which form the core of the sensitivities of these

constraints.
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Chapter 10.

FLUTTER ANALYSIS

Flutter analysis in ASTROS provides the capability to assess the aeroelastic stability characteristics of
the designed structure and to correct any deficiencies in a systematic fashion. Both subsonic and super-
sonic analyses are available and, reflecting the multidisciplinary character of the procedure, the design
task can be performed with any number of boundary conditions and flight conditions. In this way, all
critical flutter conditions can be analyzed and designed for simultaneously. This section first describes
the flutter analysis methods that have been implemented in ASTROS and then describes the unique
specification of the flutter constraints and the algorithm implemented to evaluate this constraint and the
corresponding sensitivity calculation.

10.1. THE P-K FLUTTER ANALYSIS

ASTROS has two methods for doing p-k flutter analysis. The first was adapted from FASTOP and the
second is an iterative solution adapted from UAI/NASTRAN. Both are described in the following sections.

10.1.1. FASTOP Method

The first flutter analysis method was implemented by combining software resources from FASTOP
(Reference 5) and NASTRAN (Reference 1). The p-k method of flutter analysis was implemented based on
an equation of the form







 

 
V
b

 


 2

 p2  Mhh  + 
V
b

 p Bhh  + Khh − 
ρ V 2

2
  


Qhh

 R  + 
p
k

 Qhh
 I  


 






  qh  =  0 (10-1)
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where

V selected airspeed

b reference semi-chord

p  ≡  k  (γ + i ) complex response frequency and eigenvalue

Mhh generalized mass matrix

Bhh generalized damping matrix for frequency response

( Equations 11-8 and 11-4)

Khh generalized stiffness matrix

Qhh  =   Q
 R  +  iQ I  generalized aerodynamic matrix 

ρ air density

k reduced frequency

qh eigenvector of modal coordinates

γ damping factor

i ≡    √−1

Equation 10-1 is similar to the equation used in Reference 5 with the exception of the 
p
k

 multiplier on the

out-of-phase portion of the aerodynamics. This change was made to allow the proper evaluation of the
aircraft’s response at low, damped frequencies such as those required to estimate the aircraft’s short
period frequency.

The generation of the modal mass and stiffness matrices is performed as part of the dynamic matrix
assembly described in Subsection 11.1. Options provided in this assembly allow for the possibility of
direct matrix input and extra point degrees of freedom that can contribute to the off-diagonal terms in
these matrices, but they are typically zero. A more commonly used feature is the specification of struc-
tural damping, which makes the stiffness matrix complex. Finally, although not specifically indicated in
Equation 10-1, ASTROS has retained the FASTOP capability to omit designated modes from the flutter
analysis. This feature is particularly useful when modes do not participate in the aeroelastic response
and only obfuscate the interpretation of the analysis.

The computation of the Qhh matrix at a number of Mach number and reduced frequency values is given

in Equation 8-14. For a given Mach number, this matrix is calculated at a series of reduced frequencies
(k’s). Equation 10-1 requires this matrix as a continuous function of k, since the determination of values
of p and k which satisfy Equation 10-1 is the basis of the p-k method. There are two different approaches
in ASTROS to the interpolation of Qhh. The first approach follows that used in NASTRAN and fits a cubic

through all the hard point k values specified in the user input KLIST (or, by default, all k values for the
associated Mach number). The second approach uses separate linear, quadratic or cubic polynomials
through the closest two, three or four hard point k values for each term in Qhh and then computes the

value at the required k value. 
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The NASTRAN algorithms are enumerated below:

Gij  =  











  0

  1

   ki − kj 
 3

 +   ki + kj 
 3

    

for  i = j  =  nhdpts  +  1

for  i = nhdpts + 1  or  j = nhdpts + 1

for  i  or  j  ≤  nhdpts

  (10-2)

where nhdpts is the number of hard points (i.e., points at which Qhh has been calculated) and the ki are

the reduced frequency values for these points. A weighting vector C is then determined

C  =  G −1  pv (10-3)

where

pvj  =  




  1

   kest − kj 
 3

 +   kest + kj 
 3     

for  j = nhdpts  + 1

for  j  ≤  nhdpts
  (10-4)

where kest is the reduced frequency value to which the aerodynamics are to be interpolated. The general-

ized aerodynamic matrix is then computed using

Ahh  

kest

  =  ∑ 
j=1

nhdpts

 Cj  


 Qhh

 R   

kj

  +  i
kj

  Qhh
 I   


kj

 


(10-5)

where 
Qhh

 I

kj
is fit rather than Qhh

 I directly since the former quantity is a much smoother value of k and

because it is needed in the formulation of Equation 10-1.

In contrast, the local curve fit approach solves for the coefficients C of the following equations:



















  

1

1

⋅

⋅

1

      

k 1

k 2

⋅

⋅

k N

   

k 1
 2

k 2
 2

⋅

⋅

k N
 2

   

⋅⋅⋅

⋅⋅⋅

⋅⋅⋅

   

k 1
 N−1

k 2
 N−1

⋅

⋅

k N
 N−1

  



















       















 

Cij 1
 R

Cij 2
 R

⋅
⋅

Cij N
 R

 















   =   















 

Qij 1
 R

Qij 2
 R

⋅
⋅

Qij N
 R

 















(10-6)

and
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




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

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⋅⋅⋅
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





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


       















 

Cij 1
 I

Cij 2
 I

⋅
⋅

Cij N
 I

 















   =   

















 

1
k1

 Qij 1
 I

1
k2

 Qij 2
 I

⋅
⋅

1
kN

 Qij N
 I

 

















(10-7)

where the real and imaginary parts of Qhh are independently approximated by N th order polynomials. In

ASTROS, the order N may be linear (N = 1), quadratic (N = 2) or cubic (N = 3) and the set



 k1 , k2 , . . . kN 



 is chosen as the set of 2, 3, or 4 



 khdpts 




 values closest to kest. As kest moves, the fits are

recomputed when necessary if the set 


 k1 , . . . kN 



 changes. A linear fit is used to extrapolate above or

below the set of hard-point k’s. The solution of the Vandermonde equations (10-6 and 10-7) is obtained
using the algorithm of Reference 36. The terms of the generalized aerodynamic matrix are then obtained
as:

A ij  
kest

  =  ∑ 
l=1

N

  Cijl
 R  kest

l−1  +  i  ∑ 
l=1

N

 Cijl  kest
l−1 (10-8)

The solution algorithm for Equation 10-1 follows the one used in FASTOP. Figure 10-1 presents a basic
flow chart of this process which involves solving the equation for a series of user defined velocity values.
The figure shows two alternative paths through the program, based on whether a flutter analysis or a
flutter design task is being performed. The two differ in that the analysis refines the user-defined
velocities to obtain a high quality display of the flutter response and, in particular, to determine the
lowest flutter speed to a high degree of accuracy. As will be shown shortly, the design path does not
require this refinement.  

Equation 10-1 is solved by determining values of p for which the determinant of the equation is zero.
FASTOP employs an algorithm based on Muller’s method (Reference 19, pp 435-438). ASTROS adopted
this algorithm, with the insertion of a capability to extract real roots that was not present in the
Reference 5 software. The occurrence of real roots in the solution is not uncommon, and with the
increasing use of active controls, is becoming more frequent. For real roots, the estimated damping is
given by:

γ  =  
p

ln (2)
(10-9)
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Figure 10-1. Flutter Analysis Algorithms Within ASTROS
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10.1.2. The Iterative Method

For this method the equations of motion are formulated as:










 p2  Mhh + p 




Bhh − 

1
2

 
ρbv
k

 Qhh
I 



 + 


Khh − 

1
2

 ρ V 2  Qhh
 R  + pb

kV
 Qhh

 I  

 

 









  qh  =  0 (10-10)

where all terms are defined as above except the eigenvalue, p, takes the form p  =  σ + iω.

In order to solve for the eigenvalues, Equation 10-10 is transformed to canonical form from N second
order equations, where N is the number of retained modes plus any EPOINT degrees of freedom, to 2N
first order equations and the eigenvalue problem proceeds with a fixed set of values for Mach number,
density, velocity and reduced frequency.

The reduced frequency variation for the iterative p-k method is based on successive updates to the
reduced frequency until the condition,

k  =  
c
_
 pI

2V
(10-11)

is satisfied. In Equation10-11, pI is the imaginary part of the eigenvalue of the current mode. 

The procedure begins with a near zero value for k where the resulting real roots are assumed to satisfy
the condition Equation 10-11 immediately. The first iteration begins with a reduced frequency that
conforms to the lowest non-zero frequency root. The iteration is repeated with succesive updates to the
assumed reduced frequency. The iteration is assumed to be converged when Equation 10-11 is satisfied to
within an acceptable tolerance. The tolerance has a default value of 10-5, and can be reset by the user (on
the FLUTTER Bulk Data entry). When the iteration has converged on the first nonzero frequency root, the
iteration begins on the next lowest frequency at the present step. 

10.2. FLUTTER CONSTRAINT EVALUATION

Flutter constraints are specified in ASTROS as

g  =  
γjl − γjREQ
GFACT    ≤  0       

j = 1, 2, … , nv

l = 1, 2, … , nroot
(10-12)

where γ jl is a damping value given by 
Re (p)

k
 for the l th root at the j th velocity. γ jREQ is the user defined,

required damping value, with the j subscript indicating that the user can specify this requirement to be a
function of velocity. Most typically, the required value would be zero for all velocities. GFACT is a scale
factor that converts the damping numbers into a range consistent with other constraints in the design
task. This is also a user input with suggested values in the range of 0.1 to 0.5.
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The user specifies that this constraint be satisfied at a series of velocities up to, and perhaps above, the
required flutter speed. Four or six velocities should be adequate. The advantages of this method of
specifying the flutter analysis and constraint evaluation compared to various alternative methods are:

(1) There is no requirement for the computation of the flutter speed. The exact computa-
tion of this speed can consume substantial resources.

(2) By using the p-k method of flutter analysis, solutions are obtained only at the veloci-
ties of interest.

(3) The constraint is evaluated at multiple velocities to handle the appearance of "hump"
modes that could become critical at velocities well below the required flutter speed.
Flutter analysis at speeds that are 0.5, 0.75, 0.9, 1.0, and 1.1 times the required speed
should be adequate for proscribing this undesirable behavior.

(4) In a similar fashion, the simultaneous consideration of a number of branches in the
flutter solution handles the complication of more than one branch becoming critical.
Also, when a number of modes are considered, there is no necessity for tracking a
specific mode, with its attendant increase in logical complexity.

(5) There is no large penalty associated with the calculation of the nroot x nv constraints
given by Equation 10-10. This is because only the critical γ jl conditions require gradi-
ent information. Very few such constraints are active for a typical design iteration.

10.3. SENSITIVITY OF FLUTTER CONSTRAINTS

The derivative of the constraint given by Equation 10-10 with respect to a design variable is

∂g
∂vi

  =  
1

GFACT
  

∂γ jl

∂vi
(10-13)

The gradient of γ jl, in turn is, from the definition following Equation 10-1 is

∂γ jl
∂vi

  =  1
k

  




∂ Re ( p )

∂vi




  −  γjl  





∂ Im ( p )

∂vi




 (10-14)

The gradients of the eigenvalues are based on Equation 10-1 in the physical coordinates, which can be
condensed to

Φgh
 T   Fgg  Φgh  qh  =  0 (10-15)

with an adjoint relation

yh
 T  Φgh

 T   Fgg  Φgh  =  0 (10-16)
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The subscripts are suppressed for clarity in the remaining formulation. The derivative of Equation 10-15
with respect to design variable vi is

2 Φ T  F  
∂ΦΦ
∂v

  q  +  Φ T  
∂F
∂v

  Φ  q  +  Φ T  F  Φ  
∂q
∂v

  =  0 (10-17)

This equation can be pre-multiplied by y T  to give 

2y T  Φ T  F  
∂Φ
∂v

  q  +  y T  Φ T  
∂F
∂v

  Φ  q  +  y T  Φ T  F Φ  
∂q
∂v

  =  0 (10-18)

The third term in Equation 10-18 is zero from Equation 10-16. The first term in equation 10-18 is not
typically zero. ASTROS, however, does not include this term in the computation of the flutter eigenvalue
derivative. Since the normal modes used in the reduction to Equation 10-1 are updated at each iteration,
the approximation made by ignoring the first term is justified in light of the computational expense
associated with computing the eigenvector derivatives. Expanding the second term and reverting to
modal coordinates gives

y T  






 

 
V
b

 


 2

p 2  
∂M
∂vi

  +  

 
V
b

 


 2

2p  M  
∂p
∂vi

  +  

 
V
b

 

 B  

∂p
∂vi

  +  p 

 
V
b

 

 
∂B
∂vi

  +  
∂K
∂vi

 






  

     − 
ρ V 2

2
  





∂A R

∂vi
  +   p  

∂A I

∂vi
  +  

∂p
∂vi

  A I  



  q  =  0

(10-19)

where A R and  A I are the real and imaginary portions of Equation 10-5 or 10-8, respectively. The velocity

is fixed during the gradient evaluation so that the term 
∂V
∂vi

 is zero.

Left- and right-hand flutter eigenvectors in the global displacement set can be expressed as

yg  =  ϕgh  yh

qg  =  ϕgh  qh

(10-20)

Equation 10-19 can then be written in the g-set and the relations for the mass and stiffness gradients
given by Equations 6-39 and 6-40 can be used. The solution of 10-19 is straightforward in the sense that

the only unknown is the 
∂p
∂vi

 term. This can be solved for by two simultaneous linear equations, with the

real and imaginary parts of the derivative the two unknowns. The notation for this is rather complex
however, and it is convenient to define intermediate expressions:

MRi + iMIi  =  yg
 T  

∂Mgg

∂vi
  qg (10-21)
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BRi + iBIi  =  yg
 T  

∂Bgg

∂vi
  qg    ;    

∂Bgg

∂vi
    =  

g
ω3

  



 
∂Kgg

∂vi
 + α vi

 α − 1 DKVB i 




(10-22)

KRi + iKIi  =  yg
 T  




 
∂Kgg

∂vi
 + αvi

 α − 1 DKVB i 



 qg (10-23)

GMR + iGMI  =  yg
 T  Mgg  qg (10-24)

GBR + iGBI  =  yg
 T  Bgg  qg (10-25)

AIR + iAII  =  yh
 T  Ahh

 I   qh (10-26)

PR + iPI  =  p (10-27)

P2R + iP2I  =  
p 2 v 2

b 2 (10-28)

PVR + iPVI  =  
p v
b

(10-29)

Note that these terms are all complex scalars.

The aerodynamic matrix is a function of the design variables through the reduced frequency. That is

∂A
∂vi

  =  
∂A
∂k

  
∂k
∂vi

(10-30)

then, continuing to define simplified notation:

DAIR  +  iDAII  =  yh
 T  

∂A I

∂k
  qh (10-31)

DARR  +  iDARI  =  yh
 T  

∂A R

∂k
  qh (10-32)

and noting that k = Im(p), further define

DRi + iDIi  =  
∂p
∂vi

  =  
∂(kγ)
∂vi

 + i 
∂k
∂vi

(10-33)

If the NASTRAN method of Aerodynamic interpolation is used, the gradient of the aerodynamic matrices
with respect to k is a straightforward application of chain rule differentiation of Equation 10-5, with only
the Ci term variable. The G matrix of Equation 10-3 is also invariant so that it is only the pv vector of

Equation 10-4 that requires differentiation:
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∂pv
j

∂k
  =  3a ( kest − kj )

 2  +  3 ( kest − kj ) (10-34)

If the local polynomial curve fit is used, the derivative of the aerodynamics is

∂Alm

∂vi
  =  ∑ 

n=2

N

  (n−1)  Clm
n

 R   kest
 (n−2)   +   ∑ 

n=2

N

  (n−1)  Clm
n

 I   kest
 n−2 (10-35)

 To further ease notation, the i subscript is implied in the following, with the understanding that
Equation 10-19 must be solved for each active flutter constraint with respect to each design variable.
With all this, Equation 10-19 becomes:











DF11

DF21

   

DF12

DF22










   










 
DR

DI
 









  =    








 P2R ⋅ MR − P2I ⋅ MI  +  PVR ⋅ BR  −  PVI ⋅ BI  +  KR 

 P2R ⋅ MI + P2I ⋅ MR  +  PVR ⋅ BI  +  PVI ⋅ BR  +  KI 








(10-36)

where

DF11  =  q
__
AIR − 

2V 2

b 2    ( PR ⋅ GMR  −  PI ⋅ GMI )    −  
V
b

 GBR

DF21  =  q
__
AII − 

2V 2

b 2    ( PR ⋅ GMI  +  PI ⋅ GMR )  −  
V
b

 GBI

DF12  =  q
__

( − AII + PR ⋅ DAIR  −  PI ⋅ DAII + DARR )

                  + 
2V 2

b 2    ( PR ⋅ GMI  +  PI ⋅ GMR )  +  
V
b

 GBI

DF22  =  q
__

( AIR + PR ⋅ DAII  +  PI ⋅ DAIR + DARI )

                  − 
2V 2

b 2    ( PR ⋅ GMR  −  PI ⋅ GMI )  −  
V
b

 GBR

(10-37)

where q is the dynamic pressure and the relation 
∂k
∂vi

 = DI, from Equation 10-33, has been used. Note that

the right-hand side of Equation 10-36 is independent of the design variable, so that these terms need to
be calculated only once for each active flutter constraint.

Once Equation 10-36 has been solved for DR and DI, the required constraint gradients are computed
using Equations 10-13 and 10-14 so that

∂γj1

∂vi
  =  

1
k

  

 DR − γjl  DI  (10-38)
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Chapter 11.

DYNAMIC ANALYSIS

Dynamic analysis in ASTROS refers to analyses where the applied loading is a function of time or
frequency. This Chapter describes the ASTROS capability to perform transient and frequency analyses,
with gust analysis treated as a special case of the frequency analysis. The additional special case of an
aircraft’s response to a blast type of loading is described in Chapter 12. Unlike the analyses described in
the preceding five sections, there is no provision for considering the results of the dynamic response
analysis in the design phase of ASTROS. The dynamic analysis capability is provided primarily to permit
the checking of the final designs using these further analyses and to provide a more complete analysis
package for general applications. The methodology described in this section borrows heavily from that
developed for NASTRAN (Reference 15).

The basic equation for transient analysis is given by

M u
..
 + B u

.
 + K u  =  P ( t ) (11-1)

and for frequency analyses by


 − ω2 M + i ω B + K + Q    u  =  P ( ω ) (11-2)

where M, B and K are the mass, damping and stiffness matrices and Q is the aerodynamic matrix that is
used in the flutter and gust analyses.

This section first discusses the generation of the matrices on the left-hand side of these equations and
then the generation of the time or frequency dependent load vectors on the right-hand side. The methods
of solution used for each of the options developed for ASTROS is then given.
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11.1. DYNAMIC MATRIX ASSEMBLY

The dynamic disciplines in ASTROS: flutter, transient response and frequency response, require addi-
tional operations to assemble the mass, damping, stiffness properties of the dynamic system(s) under
analysis. This is done to accommodate those properties of the dynamic system which cannot be modeled
directly using structural elements. The ASTROS dynamic matrix assembly is patterned after that in
NASTRAN (Chapter 3 and Section 4.3 of Reference 15) and supports extra points, user defined direct
matrix input and transfer function matrix input as well as several damping options to model the dynamic
characteristics of the system. ASTROS does not provide damping elements (like the NASTRAN CVISC or
CDAMP), nor is the NASTRAN feature for element dependent structural damping available in ASTROS.
In keeping with the multidisciplinary nature of this code, ASTROS has introduced the innovation of
having the extra point definitions include an "extra point set identification" which is used in the bound-
ary condition definition. The damping definition is also boundary condition dependent in ASTROS. These
features allow several different dynamic systems to be analyzed simultaneously.

Dynamic matrix assembly in ASTROS and NASTRAN has a large number of options and so becomes very
complex. Rather than duplicate the extensive discussion of this topic contained in Reference 15, this
document emphasizes those features that are unique to ASTROS or are different than those in NAS-
TRAN.

The analyses of the dynamic response disciplines can be done (in general) using either a direct or a modal
formulation, although ASTROS does not support a direct formulation of the flutter analysis. Using
NASTRAN as a guide to define the forms of the dynamic matrices, two forms of the mass and damping
matrices (a direct form and a modal form) and four forms of the stiffness matrix: the transient and
frequency response forms are different for both direct and modal formulations are available. Any or all of
these eight matrices may be computed within each boundary condition in ASTROS, depending only on
the selected dynamic disciplines and discipline options. Flutter analysis and optimization in ASTROS
makes use of the modal frequency response form of the matrices. These forms are shown in Equations
11-3 through 11-10.

Direct forms:

Mdd  =  Mdd
 1  + Mdd

 2 (11-3)

Bdd  =  Bdd
 2  + 

g
ω3

 Kdd
 1 (11-4)

Kdd
 t   =  Kdd

 1  + Kdd
 2 (11-5)

Kdd
 f   =  (1 + ig) Kdd

 1  + Kdd
 2 (11-6)

Modal forms:

Mhh  =  mh + ϕdh
 T   Mdd

 2   ϕdh (11-7)

Bhh  =  bh + ϕdh
 T   Bdd

 2   ϕdh (11-8)
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Khh
 t   =  kh + ϕdh

 T   Kdd
 2   ϕdh (11-9)

Khh
 f   =  (1 + ig) kh + ϕdh

 T   Kdd
 2   ϕdh (11-10)

where the subscripts d and h denote direct (d-set) and modal (h-set) forms, respectively and the super-
scripts t and f denote transient and frequency forms, respectively. The superscript 1 is used to denote
those terms derived from the assembly of the structural elements and 2 to denote those terms obtained
from direct matrix input or from transfer function input. The terms "g" and "3" refer to the general
structural damping and the radian frequency used to define equivalent viscous damping, respectively.

The mh are the generalized mass terms augmented with zeros for extra point degrees of freedom and ϕdh

is the matrix of eigenvectors from the real eigenanalysis expanded to include extra points. The bh are the

expanded generalized modal damping terms obtained from an optional modal damping table, g(ωh),
defined by the user:

bh  =  g ( ωh ) ⋅ ωh mh (11-11)

and kh are the generalized stiffness terms from the real eigenanalysis. Note that the expressions for the

direct damping matrix and both frequency response stiffness matrices (Equations 11-4, 11-6 and 11-10)

include both a complex structural damping and the viscous damping 
g

ω3
. These terms are, however,

mutually exclusive damping forms. If ω3 is nonzero, viscous damping is used as in Equation 11-4 while a

zero value for ω3 results in the complex structural damping of Equations 11-6 and/or 11-10. More details

on the ASTROS damping options are given in Section 11.1.3.

11.1.1. Direct Matrix Input

Direct matrix input allows the user to modify any or all of the dynamic mass, damping and stiffness
matrices. ASTROS provides two mechanisms for the user to define direct matrix input. The most general

is the direct matrix input option in which the user directly defines the matrices Mdd
 2 , Bdd

 2 , and/or Kdd
 2

in Equations 11-3 through 11-10. The second is through the definition of transfer functions. When these
two methods are used in the same boundary condition, the resultant direct matrix input will be formed
from the superposition of both sets of input.

Both direct matrix input and transfer functions refer to the physical or p-set degrees of freedom (where
the p-set is the union of the structural degrees of freedom and the extra point degrees of freedom). In fact,
the direct matrix input selected for dynamic matrix assembly must be square and of the order of the
number of p-set degrees of freedom. The user can, therefore, couple structural degrees of freedom with
the extra point degrees of freedom through both input mechanisms. The ASTROS feature for extra point
sets adds a complication in that the size of the physical set varies between boundary conditions.

11.1.2. Reduction of Direct Matrix Input

The direct matrix input from all sources, which is formed in the p-set, is reduced to the dynamic set prior
to its inclusion in the assembly process indicated in Equations 11-3 through 11-10. The extra point
degrees of freedom create a complication in that the standard reduction matrices Tmn and Go do not
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include extra points. In addition, matrix Go may represent the result from either static condensation or

from generalized dynamic reduction. The presence of extra points also requires that additional columns
and rows be appended to the matrix of eigenvectors ϕai that is output from the real eigenanalysis. These

operations are:

Tmn
 d   =  


 Tmn | 0 


(11-12)



 Go

 d 
 static

  =  

 Go | 0 


(11-13)



 Go

 d 
 gdr

   =   



 
Go
0   

0

I
 




(11-14)

ϕdh   =   



 
ϕai
0

   
0

I
 




(11-15)

in which the d superscript or subscript denotes that the transformation applies to the reduction to the
dynamic degrees of freedom (d-set). ASTROS has imposed the restriction that the extra point degrees of
freedom follow all the structural degrees of freedom in the sequence list, so these operations can be
performed by simply appending the proper terms to the appropriate partitioning vectors and transforma-
tion matrices.

Following this expansion of the transformation matrices, the standard matrix reductions are applied to
the direct input matrices with the extra point degrees of freedom carried along in the independent, free
and analysis sets. The modal transformations are applied in a separate step to the d-set direct input
matrices if the modal forms of the dynamic matrices are required.

11.1.3. Damping Options

The damping options that are available in dynamic matrix assembly are sufficiently numerous that they
merit additional clarification. Three means of specifying damping terms are available in ASTROS:

the definition of a direct input damping matrix B2PP, a complex direct input stiffness matrix,
K2PP and/or specification of first order transfer function terms

the specification of a structural damping value, g, and/or a radian frequency for equivalent viscous
damping, ω3

the specification of a modal damping table, g ( ω )

The second and third options are selected for each boundary condition through the solution control
boundary condition DAMPING option. For options two and three, the DAMPING option refers to VSDAMP and
TABDMP1 bulk data entries, respectively. These damping options may ALL coexist in a single boundary
condition.

To understand the damping matrices that result for combinations of damping options, it is useful to
understand the steps involved in the assembly of the damping and stiffness matrices. The direct input

damping matrix Bdd
 2  is formed first from the transfer function and B2PP data, if any are selected in the

solution control boundary condition definition. The direct damping matrix Bdd is then assembled as
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shown in Equation 11-4 with the second term omitted unless both "g" and "ω3" are defined through the

DAMPING option. This assembly process does not depend on whether the modal or direct formulation is
desired since the second term in Equation 11-8 is the modal transformation of the full direct damping
matrix. Thus, when equivalent structural damping is selected, it will appear in both the direct and modal
damping matrices.

Once the direct damping matrix is formed, the assembly of the modal damping matrix may proceed.
Unless a modal damping table is referenced by the DAMPING option, the modal damping matrix is merely
the modal transformation of the direct damping matrix. If, however, the DAMPING option refers to a
modal damping table (note that the DAMPING option can refer to both VSDAMP and a modal damping table
in the same boundary condition), the bh terms are formed and included in the assembly of the modal

damping matrix.

For both direct and modal frequency response (and flutter analysis), the complex structural damping
option is available. In this case, the complex multiplier is applied to the structural stiffness matrix or the
generalized stiffness matrix as shown in Equations 11-6 and 11-10. The multiplier will be unity, however,
if the equivalent viscous damping option has been selected instead. That is the case if both "g" and "ω3"

are nonzero on the referenced VSDAMP entry or if there is no VSDAMP entry selected. The frequency
response forms of both the modal and direct stiffness matrices might not, therefore, be complex matrices
if the imaginary term is zero. There is no restriction, however, that the direct matrix input of K2PP be
real, so that complex structural damping input through direct matrix input can coexist with the equiva-
lent structural damping of Equation 11-4. Therefore, the frequency response modal and/or direct stiffness
matrices may be complex even though the equivalent structural damping option is selected.

11.2. DYNAMIC LOADS GENERATION

ASTROS has adapted NASTRAN loads generation concept to define the right-hand sides of Equations
11-1 and 11-2. The formats used in ASTROS for the preparation of the user input for these loads has
been modified from the NASTRAN formats and can be quite involved. Section 3.5 of the Applications
Manual provides guidance on this preparation. This section is limited to a specification of the types of
loads input that are available for the dynamic response analyses.

11.2.1. Transient Loads

For transient loads, the P ( t ) vector of Equation 11-1 is specified as the weighted sum of any number of
component loads:

P ( t )  =  So  ∑ 
i

 Si Li ( t ) (11-16)

where So and Si are scalar multipliers. Note that this is similar to static loads generation. The L (t )

vector, in turn, can be represented as the product of a spatial component and a time varying component

L ( t )  =  Xt   ⋅ T (11-17)

where this matrix notation is meant to convey the information that any number of time functions can be
specified for a given model. The Xt matrix has as many rows as there are degrees of freedom in the p-set
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and as many columns as there are unique time functions. The T matrix has as many rows as there are
unique time functions and a column for each time step that the user has requested. There are two
distinct formats for specifying the rows of the T matrix. The first is a general form of

Tij  =  Fi ( tj − τi ) (11-18)

where τi is a user input and the Fi functions are input as a tabular function of time. The second format is

the specialized form of

Tij  =     









  

t
_

j
 b

i  ec
i
 t
_

j  cos ( ωi t
_
j + ϕi )

0

           

0 ≤  t
_
j ≤ T2

i
 − T1

i

0 ≤  t
_
j  and  t

_
j  >  T2

i
 − T1

i

(11-19)

where t
_
j  =  tj − T1

i
 − τi,  τi,  bi,  ci,  ωi,  ϕi,  T1

i
 and T2

i
 are user inputs and the Fi functions of Equation

11-18 are input as a tabular function of time. The actual input of the special functions using Equation
11-19 is perhaps easier in practice than it is in theory. This is because most of the input terms are likely
to be zero for particular wave forms.

ASTROS generates the Xt matrix of Equation 11-17 in the p-set. Before the multiplication by the T

matrix is performed, the Xt matrix is reduced to d- or h-size, depending on whether a direct or modal

formulation has been specified. The scalar multiplications of Equation 11-16 are also performed on the
spatial matrices prior to multiplication by the T matrix. Following the multiplication, the loads are
stored on the data base for later retrieval in the response calculation. The P(t) matrix has dimensions of
either d-size by NSTEP, the number of time steps in the response, or of h-size by NSTEP.

11.2.2. Frequency Dependent Loads

In a manner similar to the transient loads, the frequency dependent loads of Equation 11-2 are generated
as the weighted sum of any number of component loads:

P ( ω )  =  So ∑ 
i

 Si Li ( ω ) (11-20)

where So and Si are scalar multipliers. The L (ω) matrix is, in turn, represented as the product of a

spatial component and a frequency dependent component:

L ( ω )  =  Xf  ⋅ F (11-21)

where this matrix notation is meant to convey the information that any number of frequency functions
can be specified for a given model. The Xf matrix has as many rows as there are degrees of freedom in the

p-set and as many columns as there are unique frequency functions. The F matrix has as many rows as
there are unique frequency functions and NFREQ, the number of frequencies required for the response
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analysis, columns. As in the transient load case, there are two formats for specifying elements in the FQ
matrix. The first is

Fij  =  

 Ci ( fj )  +  i Di ( fj )    e

i 

 θ

i
 − 2 π f

j
 τ

 i
 
 (11-22)

while the second is

Fij  =  

 Bi ( fj )  e

 iθ
i
 

 f

j
 
     e

i ( ϕ
i
 ( f

j
 ) − 2πf

j
 τ

i
) (11-23)

where Bi,  ϕi ( fj ),  Ci and Di are input as tabular functions of frequency and θi and τi are user inputs. The

fj values are the user specified frequencies at which the response is to be calculated.

ASTROS generates the Xf matrix of Equation 11-21 in the p-set. Before the multiplication by the F

matrix is performed, this matrix is reduced to d-size or h-size, depending on whether a direct or modal
formulation has been specified. The scalar multiplications of Equation 11-20 are also performed prior to
the multiplication by the F matrix. Following the multiplication, the loads are stored on the data base for
later retrieval in the response calculation. The P ( ω ) matrix has dimensions of either d-size by NFREQ or
h-size by NFREQ.

11.2.3. Gust Loads

Gust analysis in ASTROS is performed as a special type of frequency analysis. As discussed in Section
8.2.2, if a gust analysis is being performed, the Q hh matrix of Equation 8-14 is computed to provide forces

due to aeroelastic deformations while the Q hj matrix of Equation 8-15 is computed to provide the gust

loads on the rigid aircraft.

The overall gust load is computed by combining these Q hj data with a downwash vector and a frequency

dependent shaping function, as described in the following paragraphs.

A one-dimensional sinusoidal gust field produces a downwash vector, Wj, at the aerodynamic panels that
has elements of the form

Wj ( ω )  =  cosγj  ⋅  exp 



  

− iω ( xj − xo )

V
 




(11-24)

where

ω  =   Frequency

j  =  Panel number

γ  =  Panel dihedral angle

xj − xo  =  Distance from the user input reference plane to the aerodynamic panel

V  =  Vehicle velocity
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The downwash vector can be thought of as a mode shape which can be multiplied by the Qhj aerodynamic

operator to give unit gust loads in modal coordinates:

Pδ ( ω )  =  Qhj ( ω )   Wj ( ω ) (11-25)

As in the flutter analysis, the Q hj matrix is required at a number of frequencies while it typically has

been computed at a different, smaller set of frequencies. The interpolation scheme described in Equations
10-2 through 10-5 for the Q hh matrix is applied to the Q hj matrix as well. The interpolation scheme of

Equation 10-8 is not available for gust analysis.

As a final step in gust load generation, the PDEL matrix can be modified by a user defined function of
frequency and by a gust velocity scale factor:

P h
f  ( ω )  =  g

__
 wg  Pw ( ω )  Pδ ( ω ) (11-26)

where

P h
f  ( ω ) =  Gust load vector in modal coordinates and is equivalent to the matrix of Equation 11-19

q
__

=  Dynamic pressure

wg =  Gust scale factor

Pw ( ω ) =  A frequency dependent weighting function matrix

where the P w ( ω ) function is defined using one of the tabular forms specified by Equations 11-22 or

11-23.

11.3. TRANSIENT RESPONSE ANALYSIS

As described in the preceding section, Equation 11-1 can be specified in terms of modal or direct coordi-
nates. If a modal analysis is specified, ASTROS checks whether the equations are coupled or uncoupled.
This is done by checking if the M, B and K matrices are all diagonal. If they are, then the equations are
solved in a relatively efficient manner using analytical equations. If they are coupled, the Newmark-Beta
numerical technique is employed. Each of these methods is now discussed using terminology given in
Section 4.6 of Reference 15. The further option of using Fast Fourier Transform techniques to perform
the transient analysis is also described.

11.3.1. Solution of Uncoupled Transient Response Equations

If the modal equations are uncoupled, it is possible to write each row of Equation 11-1 separately:

mi  q
..

i  + bi  q
.
i  + ki  qi  =  Pi ( t ) (11-27)

which can be put into a more standard form as:
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q
..

i  + 2β  q
.
i  + ωo

 2  qi  =  
Pi ( t )

mi
  (11-28)

where

β  =  
bi

2mi

ωo
 2  =  

ki
mi

Equation 11-28 can be solved for the response at any time in terms of the displacement and velocity at
specified times tn and a convolution integral of the applied load:

qi (t)  =  F ( t − tn )  qi, n  +  G ( t − tn )  q
.
i, n  +  1

mi
    ∫ 

t
n

t

  G (t − τ)  Pi (τ) d τ (11-29)

where the F and G functions are combinations of the homogeneous solutions

qi ( t )  =  exp  



    − β ± √  β 2 − ωo

 2      


 t − tn 


 




(11-30)

F and G satisfy, respectively, the initial conditions for unit displacement and unit velocity.

It is assumed that the load varies linearly between tn and n + 1, so that, in Equation 11-29

Pi ( τ )  =  Pi, n + 
τ

∆ t
  ( Pi, n + 1  −  Pi, n ) (11-31)

For this form of the applied load, the integral in Equation 11-29 can be evaluated in closed form. The
general form of the solutions at the next time step, t  =  tn + 1, in terms of the initial conditions at t  =  tn
and the applied loads, is

qi, n + 1  =  F  qi, n + G  qi, n + A  Pi, n + B  Pi, n + 1 (11-32)

q
.
i, n + 1  =  F′  qi, n + G′  qi, n + A′  Pi, n + B′  Pi, n + 1 (11-33)

The coefficients are functions of the modal parameters, mi ,  β ,  ωo
 2, and of the time increment, ∆ t. The

uncoupled modal solutions are evaluated at all time steps by recurrent application of Equations 11-32
and 11-33. The accelerations are calculated by solving for q

..
 from Equation 11-28:

q
..

i , n + 1  =  
Pi , n + 1

mi
  =  2 β qi , n + 1  −  ωo

 2  qi , n + 1  (11-34)
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The algebraic expressions for the coefficients in Equations 11-32 and 11-33 depend on whether the

homogeneous solutions are under damped ωo
 2  >  β 2, critically damped ωo

 2  =  β 2, or over damped

ωo
 2  <  β 2. In addition, a separate set of expressions is used for undamped rigid body modes ωo  =  βo  =  0.

As an example, these terms are defined here for the most frequently encountered case of underdamped
solutions while Section 11.4 of Reference 1 provides definition for all four cases.

F  =  e− β ∆ t  



 cos ω ∆ t  +  

β
ω

 sin ω ∆ t 




G  =  
1
ω

  e− β ∆ t  sin ω ∆ t  

A  =  
1

∆ t k ω
  










  e− β ∆ t  




  





ω 2 − β 2

wo
 2   −  ∆ t β




  sin ω ∆ t −  





2 ω β
wo

 2  + ∆ t ω



 cos ω ∆ t 




 +  

2 β ω

wo
 2  











B  =  
1

∆ t k ω
  










  e− β ∆ t  




  −  





ω 2 − β 2

wo
 2




  sin ω ∆ t + 

2 ω β

wo
 2  cos ω ∆ t 




  +  ω ∆ t  

2 β ω

wo
 2  











F′  =  − 
ωo

 2

ω
  e− β ∆ t  sin ω ∆ t

G′  =  e− β ∆ t  



 cos ω ∆ t  −  

β
ω

 sin ω ∆ t




A′  =  
1

∆ t k ω
  e

− β ∆ t 

( β + ∆ t ωo

 2) sinω∆ t  +  ω cosω∆ t

  −  ω



B′  =  
1

∆ t k ω
  −  e−β ∆ t (β sin ω ∆ t  +  ω cos ω ∆ t )  +  ω 

(11-35)

where

ω2  =  ωo
 2 − β 2     and     k  =  ωo

 2 mi

11.3.2. Solution of Coupled Transient Response Coupled Equations

If the modal equations contain off-diagonal terms or if the direct method of analysis is used, the uncou-
pled formulation of the preceding section is not applicable. Instead a numerical procedure must be
adopted and ASTROS has selected the Newmark-Beta algorithm used in NASTRAN. This method trans-
forms Equation 11-1 to a discrete equivalent of the form
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A  un + 1  =  
1
3

  

Pn + 1  +  Pn  +  Pn − 1 


  +  C  un  +  D  un − 1 (11-36)

where

ui  =  displacement response at the i th time step

A  =   1

∆ t 2 M  +  1
2 ∆ t

 B  +  
1
3

 K

C  =   2

∆ t 2 M  −  1
3

 K

D  =  − 
1

∆ t 2 M  +  1
2 ∆ t

 B  −  
1
3

 K

∆ t  =  time step

For a fixed time step, matrices A, C and D need to be computed only once. Additionally, A is decomposed
so that the loop on the time step only requires forward/backward substitutions to solve Equation 11-36.

Equation 11-36 requires the response and the load at two previous steps, as well as the load at the
current time step. In order to initiate the calculation, starting values are calculated using

u−1  =  uo − u
.
o  ∆ t

P−1  =  K  u−1 + B  u
.
o

Po  =  
1
2

   

 P
__

o  +  K  uo + B  u
.
o 




(11-37)

where P
__

o is the user input load vector at the initial time. Initial conditions (i.e., uo and u
.
o) are available

only for the direct method. When the time step changes, the matrices of Equation 11-36 need to be
recomputed. Also, the starting values need to be adjusted to:

u−1  =  un −  ∆ t2  u
.
o  +  

1
2

  ∆ t2
 2  u

..
o

P−1  =  K  u−1 + B  u
.
o − ∆ t2  uo  +  M  u

..
o

(11-38)

where

∆ t2  =  new time step

u
.
o  =  

1
∆ t1

  

 un  −  un − 1 


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u
..

o  =  
1

∆ t1
 2   


 un −  2 un − 1  +  un − 2 



n  =  last time of the old time step

∆ t1  =  old time step

Equation 11-35 provides displacement information. If velocity and acceleration information are also
required, these vectors are calculated using

u
.
n  =  

1
2 ∆ t

  

 un + 1  −  un − 1 


(11-39)

u
..

n  =  
1

∆ t 2   

 un + 1 −  2 un  +  un − 1 


(11-40)

11.3.3. Solution of Transient Equations Using Fast Fourier Transforms

A third transient analysis technique transforms the time dependent loads into the frequency domain and
using Fast Fourier Transform (FFT) techniques, solves the equations using the frequency response
techniques of Section 11.4 and then transforms the resulting response functions back to the time domain.
Appendix C contains a description of the FFT algorithms.

If the FFT option is specified, the time dependent loads of the T matrix in Equation 11-18 or 11-19 are
computed as equal time intervals as specified by the user. Each row of the T matrix is transformed
independently. No restrictions are imposed by ASTROS on the form of this time function, but it must
conform to the restrictions of periodicity or be of sufficiently short duration that FFT methods are
applicable.

Once the frequency response has been calculated, the inverse FFT algorithm is applied separately to each
degree of freedom in the response. This provides the response of the displacement. The response of the
velocity is obtained by multiplying the frequency domain data by i ω, the imaginary constant times each
frequency value, and performing the inverse FFT on the resulting frequency vector. Similarly, the accel-
eration response is obtained by performing the inverse FFT on the displacement response in the fre-

quency domain multiplied by − ω2.

11.4. FREQUENCY RESPONSE ANALYSIS

As in the transient response case, the frequency response calculation of Equation 11-2 can be performed
in terms of direct or modal coordinates. If a modal analysis is specified, a determination is made whether
the equations are coupled or uncoupled by checking if the M, B or K matrices are all diagonal. If they are,
then the equations can be solved independently in a relatively efficient fashion. The following sections
described the response calculations for both the uncoupled and the coupled formulations. The special case
of performing gust analysis in the frequency domain is treated in a separate section.
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11.4.1. Solution of Uncoupled Frequency Response Equations

If the modal equations are uncoupled, it is possible to write each row of Equation 11-2 separately:



 − ω2  mi  +  iωbi  +  ki 



  qi  =  Pi ( ω ) (11-41)

Equation 11-41 is solved for each frequency and mode combination to give the overall frequency response.

11.4.2. Solution of the Coupled Frequency Response Equations

If the matrices given in Equation 11-2 are coupled, the response is calculated using

u  =   − ω 2 M  +  iωB  +  K 
 −1

  P ( ω ) (11-42)

This indicates that a separate decomposition of the matrix must be performed for each frequency in the
analysis. ASTROS uses standard decomposition and forward/backward substitution routines to solve
Equation 11-42.

11.4.3. Solution of Frequency Response Equation Including Gusts

If gust loads are present for the analysis, the solution technique of Equation 11-42 can still be applied,
but it is necessary to add terms representing the aerodynamic effects. The direct solution option is not
supported for this case so that the equation to be solved is




 − ω2 Mhh  +  i ω 


 Bhh  −  qb

v
 Ahh

 I  

  +  Khh  −  Ahh

 R  



  uh  =  P h

f  ( ω ) (11-43)

where the A hh
 R and A hh

 I matrices are the real and imaginary parts of Equation 10-5 and the P h
f  vector

is defined in Equation 11-26.
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Chapter 12.

AUTOMATED DESIGN

The role of automated design in ASTROS is to apply resizing algorithms to drive the design toward one
that satisfies user-specified criteria in an optimal manner. Chapter 4 discusses the multidisciplinary
optimization task of ASTROS, in terms of the  overall design task, which is specified as:

Find the set of design variables, v, which will minimize

F (v) (4-1)

Subject to:

gj (v)  ≤  0.0            j  =  1 , … ncon (4-2)

vi
lower  ≤ vi  ≤ vi

upper         i  =  1 , … ndv (4-4)

This Chapter discusses two alternative methods for solving this task: mathematical programming
and fully stressed design. These techniques are complementary in the sense that mathematical pro-
gramming techniques are quite general in the problems they can solve, but are computationally inten-
sive. Fully stressed design provides an efficient means to solve large design tasks, but this technique is
limited to problems subject only to stress constraints. Although only these two methods are present in
ASTROS at this time, it is recognized that there are other algorithms that could be used to perform the
automated design task. Notably, there are a number of algorithms which can be thought of as repre-
senting a synthesis between mathematical programming methods and physical optimality criteria, such
as fully stressed design. These further methods could be classified as mathematical optimality criteria
methods in that they base their redesign on mathematical criteria that are known to hold true at the
optimum. References 29, 30 and 31 contain algorithms that fit in this category although they are quite
distinct from one another. These alternatives are not discussed here, but their potential for performing

THEORETICAL MANUAL

ASTROS AUTOMATED DESIGN 12-1



automated design is recognized with further research required to specify exactly how they fit into the
ASTROS environment.

12.1.  MATHEMATICAL PROGRAMMING

Mathematical programming techniques can be characterized as search techniques which progress
toward an optimum based on information available for the current design. A variety of algorithms are
available to perform this search. The µ-DOT algorithm of References 32 and 33 is used in ASTROS. This
algorithm combines features from feasible directions (Reference 34) and generalized reduced gradi-
ent (Reference 35) algorithms to provide an efficient and powerful overall procedure. The µ-DOT algo-
rithm can be characterized as a direct method in that constraint information is used directly in the
optimization process. Indirect methods, such as the interior penalty function method, the constraints are
adjoined to the objective and then an unconstrained optimization procedure is applied.

Optimization algorithms can also be partially characterized by the method they employ in the one-dimen-
sional search that is required to determine the distance to be traveled along a direction that has been
determined to give an improved design. The µ-DOT algorithm employs a technique wherein bounds on
the move direction are first determined and a polynomial interpolation technique is used to find the
minimum within these bounds.

As mentioned, the generality of mathematical programming algorithms is offset by the amount of com-
puter resources required in their application. The remainder of this Chapter discusses techniques that
are employed in ASTROS to minimize the size of the optimization task, to wrest the maximum amount of
usefulness out of each analysis of a particular design and to find the balance between performing too
many structural analyses and too few. Reference 6 provided the basis for many of the concepts discussed
here.

12.1.1.  Reduction of the Number of Design Variables

As discussed in Section 4.2.1, design variable linking is used to permit the application of mathematical
programming algorithms to practical structural design problems. There is no fixed limit on the number of
design variables a mathematical programming algorithm can handle in general, nor does ASTROS, in
particular, impose any limits. The limits are indirect in that computer resource requirements are a
nonlinear function of the number of design variables and constraints. Experience has indicated that
problems with two to three hundred design variables approach the practical limit of problem size that can
be attempted. This limit is both subjective, in the sense that different investigators have different
tolerances for what they will endure, and machine dependent, with a supercomputer just becoming
effective at about the same point that a microcomputer or a workstation is becoming untenable.

12.1.2.  Reduction of the Number of Constraints

The number of constraints given by Equation 4-2 that are generated in ASTROS for even a moderate
problem can number in the thousands. Each finite element can generate one or more constraints for each
load case, while the remaining constraints of Section 4.2.2 also contribute to the total number. Typically,
only a small percentage of these constraints will affect the final design and it is necessary to exploit this
fact, both to reduce the size of the mathematical programming task and to limit the effort required to
compute the constraint sensitivities. The basic concept is to retain only those constraints for the design
task that could play an active role in the design process. The selection of these critical constraints
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requires making a judgment, but one with minimal risk if the retention criteria are sufficiently broad.
Two retention criteria are applied in ASTROS:

All constraints with a value greater than a specified value, ε, are retained.

The most critical NRFAC x ndv constraints are always retained, where NRFAC is a user specified
parameter and ndv is the number of global design variables.

Default values of NRFAC = 3.0 and ε  =  −0.10 are specified in the standard MAPOL sequence. These
values can be tailored to a specific application by editing this standard sequence.

When shape functions are used, certain user-specified thickness constraints data entries (See Section
4.2.2.3) are retained in addition to those previously selected. This is because the retention criteria are not
adequate to predict whether these crucial constraints will drive the design. If they are not retained and
become violated during the redesign process, the design can be driven to physically unrealistic values
that would make further analyses incorrect.

Following the determination of the active constraints, a screening operation takes place in each boundary
condition that can provide significant efficiencies if some of the operations performed during the analysis
phase do not require sensitivity calculations. For example, for a run with multiple boundary conditions,
one or more of the boundary conditions may not contain any active constraints. In this case, there would
be no need to process the inactive boundary condition(s). Further, within a boundary condition, certain
disciplines may contain active constraints while others do not. Again, the inactive disciplines do not
require further processing. Finally, within a discipline, some subcases may not contain active constraints
and therefore are not included in the sensitivity evaluation.

12.1.3.  The Approximate Design Problem

Once information on the current design is obtained, it is passed to the µ-DOT procedure for processing
seven basic pieces of information:

Fo the current value of the objective

vo vector of current values of the design variables

go vector of current values of the active constraints

ro vector of current values of the active user functions responses

∂Fo

∂vi
vector of gradients of the objective with respect to the design variables

A Matrix of the gradients of the active constraints with respect to

the design variables 
∂go

∂vi

AR
u Matrix of gradients of active responses associated with user functions 

∂ro

∂vi

where the o subscript indicates that quantities have been calculated for the current value.
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Since the analysis phase of ASTROS is the most costly, it is important to minimize the number of
complete analyses that are performed. This is done by performing the redesign under the assumption
that the gradients are invariant with respect to changes in the design variable. This is equivalent to
performing a first order Taylor series expansion about the original design and using this information in
the redesign. It is, therefore, very important that the gradient information be of high quality. As dis-
cussed in Reference 6, one way of ensuring this quality is to consider the physical nature of the constraint
and, in particular, to recognize that stress and strain are nearly linearly proportional to the inverse of the
physical design variables (for determinate structures, the linear relation is exact). It is for this reason
that ASTROS, in the case of unique linking and physical linking (see Section 2.2.1) defines a new
variable that is the inverse of the global variable:

xi  =  1

vi (12-1)

In terms of the direct gradient information that is computed by ASTROS, a direct or inverse Taylor
Series expansion of the desired function is formed:

f
_
  =  fo  −  ∑ 

i = 1

ndv

   

∂f
∂vi

  ( xi − xoi )

xoi
 2   (inverse approximation) (12-2a)

f
_
  =  fo  +  ∑ 

i = 1

ndv

   
∂f
∂vi

  ( vi − voi )  (direct approximation) (12-2b)

The µ-DOT procedure requires the evaluation of the objective and constraint functions and their gradi-
ents. The gradients are not invarient in the case of inverse variables and for user function constraints, as
will be presented. To re-evaluate the function gradients, the following expressions are used:

∂f
__

∂xi

  =  − 1
xo

i

 2  
∂f

∂vi

  (inverse approximation) (12-3a)

∂f
__

∂vi

  =  
∂f

∂vi

  (direct approximation) (12-3b)

For the objective function and the set of canonical ASTROS constraints, the constraint or objective
function is directly approximated using Equation 12-2 or 12-3 as appropriate — the choice is made by
ASTROS to exploit the known characteristics of the design variables and constraints.

For the constraint gradient sensitivity calculation of Equation 12-3, µ-DOT makes its own determination
as to which constraints are expected to be active during the design and requests gradient information
only for this reduced set. This results in a slight efficiency in terms of the calculations required by
Equation 12-3; more importantly, the efficiency of the µ-DOT procedure is strongly affected by the
number of constraints it retains.
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The relations given by Equations 12-2 and 12-3 are high quality approximations. The fact that this does
entail approximations is recognized by imposing constraints on the movement of the inverse or direct
design variables:

xo
i

MOVLIM
  ≤  xi  ≤  MOVLIM  ⋅  xo

i
  (inverse approximation) (12-4a)

vo
i

MOVLIM
  ≤  vi  ≤  MOVLIM  ⋅  vo

i
  (direct approximation) (12-4a)

where a default value of MOVLIM  =  2.0 is specified in the standard MAPOL sequence and can be changed
by the user. As used by ASTROS, MOVLIM must always be greater than 1.0. As a final comment on move
limits, if the upper and lower bounds specified by Equation 12-4 exceed user specified values on the
variable

1

vi
 max  ≤  xi  ≤  1

vi
 min (12-5a)

vi
min  ≤  vi  ≤  vi

max (12-5b)

the user specified values are used as the side constraints in µ-DOT. The vi
 min  and   vi

 max  are user input

values for the maximum and minimum allowed values for the i th direct design variable.

If shape function linking is used, the inverse design variable concept cannot be used. The physical
significance of using the inverse variable is not clear in this case, but more importantly, the design
variable values can pass through zero so that the inverse variable would be infinite. The function and
gradient evaluations for this case are then formed using direct approximation.

For user function constraints or objective function, a slightly different approach to building the approxi-
mation is taken. This is best illustrated by reviewing the function form:

as  =  h ( r1 , r2 , … , rn ) (4-59)

where:

as is the synthetic function value

h is some set of algebraic operators

ri are responses of the finite element analysis and/or model characteristics

In general, the derivative of the user function is:

∂as

∂vj
  =  h

__
 ( r1 , 

∂r1

∂vj
 , r2 , 

∂r2

∂vj
 , … , rn , 

∂rn

∂vj
 ) (4-60)
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where h
__

  is determined automatically by ASTROS from the symbolic differentiation of Equation (4-59).

For purposes of the approximate problem, as  and 
∂as

∂v
  must be re-evaluated when directed by µ-DOT. To

perform this re-evaluation, ASTROS approximates as  as:

as

__
  =  h ( r1

__
 , r2

__
 , … , rn

__
 ) (12-6)

where ri

__
  is obtained using ro  and Ak

u  in Equation (12-2). Direct or inverse approximation is used

depending on the nature of ri .

Similarly, 
∂as

∂v
  is approximated from:

∂as

___

∂vj
  =  h

__
 ( r1

__
 , 

∂r1

__

∂vj
 , r2

__
 , 

∂r2

__

∂vj
 , … , rn

__
 , 

∂rn

__

∂vj
 ) (4-60)

where ri

__
  and 

∂ri

__

∂v
  are obtained using ro  and Ak

u  in Equation (12-2) and (12-3). This approach preserves

the nonlinearities that are intrinsic to the user’s function, h, while allowing an efficient re-evaluation of
an approximate  as during the actual resizing step. Again, the move limit controls are used to prevent the

design process from straying due to errors in the approximations.

12.1.4.  Termination Criteria

The decision as to when to terminate an automated design procedure is a subjective one. The goal is to
find a balance between premature termination before the design has converged on the one hand and
performing wasteful iterations after the design has, for all practical purposes, reached an optimum on the
other hand. Termination criteria are imposed at two levels within the ASTROS procedure. The first is
within the redesign phase of Figure 4-1 and uses µ-DOT criteria to terminate this phase. Since µ-DOT
has solved an approximate problem, a number of iterations are required to find a converged optimum.
For the second level, it is therefore necessary, following each redesign, to check whether the design can be
considered converged.

The termination criteria within µ-DOT are based on changes in the objective function. If the absolute
value of the change in the objective function is less than µ-DOT parameter DABOBJ or the relative
change in the objective function is less than µ-DOT parameter DELOBJ for ITRMOP iterations, the
µ-DOT procedure is terminated. Default parameters, which may be overridden by bulk data input, for the
three parameters are DABOBJ = 0.001 Fo, DELOBJ = 0.001 and ITRMOP = 2. Fo is the initial value of

the objective when µ-DOT is invoked.

Following the µ-DOT redesign, an initial determination is made as to whether the design has converged.
The criteria used here is similar to the µ-DOT criteria in that the design is tentatively judged to be
converged if:

  ∆ F    ≤  0.005 (12-13)
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or if:




  

∆ F
Fo

  



  ≤  0.01  CNVLIM (12-14)

where ∆F is the change in the objective for the current redesign and CNVLIM is defined in the standard
MAPOL sequence to be 1.0. Equation 12-14, therefore specifies convergence when less than a 1.0 percent
change is made in the weight of the structure.

So far, the discussion has been in terms of changes in the objective function, but clearly the values of the
constraints have to be considered before a final convergence determination can be made. If an initial test
of Equation 12-13 or 12-14 is satisfied, it is necessary to make a further analysis of the redesigned
structure to see if all the constraint conditions are satisfied. These constraints could be violated because
µ-DOT was not able to achieve a feasible design based on the information given to it. Alternatively, all
the constraints of the approximate problem given by Equation 12-5 or 12-9 may be satisfied, but a
reanalysis may find them violated. Final convergence is determined to have occurred when one of the
conditions of Equation 12-13 or 12-14 is satisfied and the largest constraint value, following reanalysis,
satisfies

2.0  ⋅  CTL  <  gmax  ≤  3.0  ⋅  CTLMIN (12-15)

where CTL is a µ-DOT parameter used to designate whether a constraint is active and CTLMIN is a
µ-DOT parameter that is used to designate whether a constraint is violated. These parameters are
initially set by the user or to default value of CTL = - 0.003 and CTLMIN = 0.0005. µ-DOT can reduce these
numbers further as part of the optimization process so that the criteria of Equation 12-15 are quite
stringent. The factors of two and three given in Equation 12-15 allow for some leeway in differences
caused by the approximation to the constraints.

Note that a lower bound limit is applied in Equation 12-15 to avoid the case of the procedure termination
when there are no active constraints. If none of the constraints are active, the current design is not
optimal. The final ASTROS design termination criteria is based on the number of analysis cycles that
have been made. This criteria is imposed to safeguard against the case where the redesign process is
unable to converge. It can also be used to limit the number of iterations that are made when there is
uncertainty as to whether the design problem has been properly posed. The default value for the maxi-
mum iterations is MAXITER  =  15, with experience indicating that termination rarely occurs because this
number is exceeded.

12.2.  FULLY STRESSED DESIGN

A Fully Stressed Design (FSD) resizing option has been provided in ASTROS to complement the standard
mathematical programming optimization methods. While ASTROS is primarily a multidisciplinary opti-
mization tool and FSD methods are, by definition, severely limited in scope, this method was included
because of its rapidity in achieving a feasible strength design and because it represents a relatively well
known optimization method. The implementation of FSD in ASTROS recognizes the inherent limitations
of this method, however, and no attempt was made to make this option handle the full range of optimiza-
tion problems that ASTROS supports. Instead, the FSD option is intended to be used as a preliminary
step to achieve a feasible or near optimal strength design from which to continue the optimization using
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the more general methods. It is, of course, useful in its own right for problems in which only stress
constraints for static disciplines are applied.

The utility of the FSD resizing option in ASTROS is that, for problems where static strength constraints
play an important role in determining the structural sizes, FSD can find a reasonable initial design very
quickly. Therefore, while the FSD method itself can treat only the static stress constraints, the FSD
option may be used in almost any optimization problem in ASTROS where stress constraints are applied.
There is only one restriction to the use of FSD: it cannot be used in combination with shape function
design variable linking. This restriction is discussed further in Section 12.2.2. Since the determination of
an initial design is the typical purpose for FSD in ASTROS, the algorithm has been implemented in such
a way that the user selects some number of initial design cycles to be performed using FSD. After these
cycles have been completed, ASTROS automatically reverts to mathematical programming methods until
convergence or the maximum number of iterations is reached. The user who wishes to use only FSD
methods can easily direct that all iterations use the FSD option.

12.2.1.  The FSD Algorithm for Local Design Variables

In the ASTROS implementation of the FSD resizing concept, the new local design variable (which
represents the physical property of one finite element; e.g., the thickness of a shear panel) is found based
on the ratio of stress to the allowable stress:

ti
new

  =  max  






 



 

σ
σall

 



 i

 α

   ti
old,

  ti
min

 







(12-16)

The stress ratio 
σ

σall
 is determined in ASTROS from the applied von Mises and/or Tsai-Wu stress

constraints. These constraints have been formulated such that:

 



 

σ
σall

 


 i

  =  gi  +  1.0 (12-17)

where gi represents the current stress constraint value. By substituting Equation 12-17 into 12-16, it is

possible to very quickly determine a new set of local design variables. The only difficulty in performing
this operation is in the bookkeeping to determine which stress constraint corresponds to a particular local
design variable. More important is the treatment of stress constraints applied to undesigned elements for
which there is no corresponding local variable. Since the ASTROS implementation of this method is
intended to be approximate, we decided to ignore these stress constraints in the computation of the new
local design variable vector. This is consistent with the fact that all the other constraint types are also
ignored.

To offer an improved convergence behavior for this FSD algorithm, the exponential factor, α, has been
provided in Equation 12-16. Small values of α result in better convergence at the expense of additional
iterations. The value of this parameter is user selectable in ASTROS, but defaults to 0.90. This value was
chosen for its rapid movement toward a fully stressed design in the initial iterations. If FSD is intended
to be used to achieve a final converged solution, a value of 0.50 or less is preferred.
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12.2.2.  Global Design Variable Determination

The local design variables, t, may be linked in ASTROS to the global design variables, v, through a
number of options described in Section 4.3. After the new set of local variables have been determined
using the algorithm described in the preceding section, an additional step is required to determine the
new set of global design variables. The method of determining the new global variables is based on the
linear linking relationship:

t  =  P v (2-6)

In the unique linking and physical linking options in ASTROS, each local variable is uniquely associated
with one global variable, although a global variable may control many local variables. In these cases, a
set of global variables is found from the new local variables by using the following:

vj
new

  =  






 max  

ti
new

Pij

 







over all nonzero terms in the j th column of P (12-18)

This determines a conservative set of global variables which satisfy the resizing as defined in Equation
12-16.

In the third, shape function, linking option in ASTROS, a single local design variable may be controlled
by many global design variables. Therefore, there is no straightforward method to determine the optimal
set of global design variables to satisfy the linking relationship of Equation 2-6. While such a determina-
tion could be made, the current implementation of FSD in ASTROS does not support this linking option.
In such cases, the ASTROS procedure will automatically revert to mathematical programming methods.
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APPENDIX A. 

THE QUAD4 ELEMENT

This appendix provides the theoretical development for the QUAD4 element that has been installed into
ASTROS. An overview of this element is given in Subsection 5.3.3, while this appendix provides detailed
information on the element. This detail is necessary because, unlike the other elements, the ASTROS
QUAD4 element has not been documented elsewhere.

A.1. DISPLACEMENT FUNCTIONS

The QUAD4 element has two distinct element coordinate systems. These are the "user defined" element
coordinate system as defined by the element connectivity data and the "internal element" coordinate

system, which is defined as having its origin at Go  ≡   ( XE
 o , YE

 o , ZE
 o ). This origin is computed by taking

the average of the grid point coordinates. The positive X- and Y-axes of the internal element coordinate
system are defined with the aid of two points, Gx

E
 and Gy

E
 described below.

V 13 and V 24 are defined as the unit diagonal vectors as illustrated in Figure A-1. Thus, the coordinates

of points Gx
E
 and Gy

E
 are given by the following:

GX
E
  =  


 ( XE

 o + X ′E ) ,   ( YE
 o + Y ′E ) ,   ( ZE

 o ) 


GY
E
  =  


 ( XE

 o  − Y ′E ) ,   ( YE
 o  + X ′E) ,   ( ZE

 o ) 


(A-1)

where, XE
 o , YE

 o  and ZE
 o  are the coordinates of the origins of the internal coordinate system and X ′E

and Y ′E are the components of the bisector vector of the unit diagonals V13 and V24.
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Figure A-1. Internal Element Coordinate System
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The coordinates of points Go, Gx
E
 and Gy

E
, are used to define the transformation from the internal

element coordinate system to the coordinate system in which the grid points are defined. The internal
element coordinate system is necessary to correctly handle irregular-shaped and non-planar elements
and is henceforth referred to as the element (E) coordinate system.

Using 2-D interpolation functions, the geometry field at any point ( ξ,  η ) in the element cross-section
(see Figure A-2) is defined, where the nodal curvilinear coordinates are related to the nodal cartesian
coordinate system in the element coordinate system by the following relationship:

X E  (ξ,  η)  =  ∑ 
i = 1

4

  Ni  (ξ,  η)  X E
 i

where i refers to grid point i, and

XE
 i   =  



 XE , YE , ZE 



 at node i, 

N (ξ,  η) 

are the interpolation (shape) functions which define the contribution of each node at a given point with
the element. These functions and their derivatives are:

Ni  =  
1
4

 (1 + ξξi)  (1 + ηηi)

∂Ni

∂ξ
  =  

1
4

 ηi (1 + ξξi)

∂Ni

∂η
  =  1

4
 ξi  (1 + ηηi)

(A-2)

The deformations of the element are also represented with the identical interpolation functions:

UE  (ξ,  η)  =  ∑ 
i = 1

4

  Ni  (ξ,  η)  UE
 i (A-3)

where   UE
  i  =  


 UE,  VE,  WE,  θx

E,
  θy

E,
  θzE

 


  T
represents the vector of displacements at grid point i in the

element coordinate system.

A.2. STRAIN-DISPLACEMENT RELATIONSHIP

The QUAD4 element incorporates a reduced solid theory for thick shells. According to this theory, the
element has five dof at each grid, defined in a coordinate system whose X-Y plane is tangent to the
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mid-surface of the shell at the given grid point. The z-axis, therefore, is the normal to mid-surface at that
point. In our nomenclature, this is called the C system (Figure A-2 and A-3).

A generalization of the C system, called I system, incorporates the characteristics of the C system at a
general point on the mid-surface of the shell element, normally the integration point (Figure A-2).

In order to establish a common definition for I and C systems, consider the following steps:

A. The tangents to mid-surface at a given point (ξ,  η) are:

Vt
1
  =  

∂   









 
x
y
z
 









 E

∂ξ
   =   ∑ 

i = 1

4

   
∂Ni

∂ξ
   










 
x
y
z
 









 E

 i

(A-4)

Vt
2
  =  

∂   









 
x
y
z
 









 E

∂η
  =  ∑ 

i = 1

4

   
∂Ni

∂η
   










 
x
y
z
 









 E

 i

(A-5)

where 









 
x
y
z
 









 E

 i

are the coordinates of grid points in E system.
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Figure A-3. Deformations at Grid Point i
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B. The axes of the new system then follow:

Z 
I
C

  =  Vn  =  
Vt1

  ×  Vt
2



Vt

1
  ×  Vt

2



X 
I
C

  =  
YE  ×  Z 

I
C



YE  ×  Z 

I
C




Y I
C

  =  Z 
I
C

  ×  X 
I
C

(A-6)

C. Finally:

TIE  =  

 XI  YI  ZI 




 T
(A-7)

TCE
 i   =  


 Xc

 i  Yc
 i  Zc

 i 
 T

(A-8)

Note that the C system is not necessarily invariant when we go from one grid to the next. This is due to
the possible warping of the element.

Since the ultimate goal of this discussion is to establish a relationship between the element strains
(which are defined in the I system), and the nodal displacements (defined in the E system), it is necessary
to develop a series of transformations along with the strain-displacement relationships.

Consider the five degrees of freedom in the C system at each grid point i to be arranged in the following
manner (Figure A-3):

Uc
 i  =   










 
u
v
w

 









 c

 i

      ;     θc
 i  =   




 
α
β 



 c

 i

(A-9)

In order to be compatible with the other DOF in the model, these are related to the six DOFat that grid
point, defined in the E system, by the relationship:

Uc
 i  =  TCE

 i    UE
 i

θc
 i  =   




 
0

−1
   

1
0
   

0
0
 



   TCE

 i    θE
 i

(A-10)

The extra transformation in the rotational case is a result of the difference in the definition of rotations
for C and E systems (Figures A-3 and A-4).

The same five DOF are related to six dof’s in the I system by using the transformations developed in
Equations A-7 and A-8. Considering Equation A-10 and A-3:
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UI   =   TIE  ∑ 
i = 1

4

 Ni  


TCE

 i 

 T

  Uc
 i   =   TIE  ∑ 

i = 1

4

 Ni  UE
 i    =   ∑ 

i = 1

4

 Ni  T  UE
 i (A-11)

and

θI  =  TIE  ∑ 
i = 1

4

 Ni  


TCE

 i 


 T
 θc

 i

     =  TIE  ∑ 
i = 1

4

 Ni  


TCE

 i 


 T


 
0

−1
    

1
0
    

0
0
 



 TCE

 i   θE
 i

     =  ∑ 
i = 1

4

 Ni  A
 i  θE

 i

(A-12)

Note that while T is invariant, A depends on the direction of the normal to mid-surface at each grid point.
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Figure A-4. Deformations in the Global Direction

THEORETICAL MANUAL

A-6 THE QUAD4 ELEMENT ASTROS



At a point along the Z-axis of I system, at a level of Z  =  
ζ
2

 tI, where,

tI  =  ∑ 
i = 1

4

 Ni ti

is the thickness of the element evaluated at this particular integration point, the DOF in I system may be
written in the following form:

uMI  =  uI   ;   uBI  =  
ζ
2

 tI θI (A-13)

The strain-displacement relationships can now be developed, using these rearranged dof’s:

εMI  =  


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
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









  uBI (A-15)

γsI  =  











γyz

γzx










 I

  =  











∂w
∂y

  +  
∂v
∂z

∂w
∂x

  +  
∂u
∂z










   =   












   
0

0
   

0

0
   

∂
∂y
∂
∂x

      
0

∂
∂z

   

∂
∂z

0
   

0

0












     











uM

uB










 I

(A-16)

Inserting Equations A-11 through A-13 into Equations A-14 through A-16, and considering the following:

∂
∂z

  uBI  =  
∂
∂z

  z θI  =  θI













   

∂
∂x
∂
∂y
1

  













  =  ∑ 
i = 1

4

  













   

∂Ni

∂x
∂Ni

∂y
Ni

  













(A-17)
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we arrive at the following general relationships:

εMI  =   ∑ 
i = 1

4

  
















   

∂Ni
∂x

0

∂Ni

∂y

   

0

∂Ni

∂y
∂Ni

∂x

   

0

0

0

  
















   T  UE
 i (A-18)

εBI  =   
ζ
2

 tI   ∑ 
i = 1

4

  
















   

∂Ni
∂x

0

∂Ni
∂y

   

0

∂Ni
∂y

∂Ni

∂x

   

0

0

0

  
















   A i  θE
 i (A-19)

γsI  =   ∑ 
i = 1

4

  













   
0

0

   
0

0

   

∂Ni

∂y
∂Ni

∂x

      
0

Ni

   
Ni

0

   
0

0

  













    









 
T

0 

 
0

A i 










   










  
U

θ
  










 E

 i

(A-20)

or, collectively:

εI  =    










 

εM
εB
γs

 










 I

    ∑ 
i = 1

4

  

































   

∂Ni

∂x

0

∂Ni

∂y

0

0

0

0

0

   

0

∂Ni

∂y
∂Ni

∂x

0

0

0

0

0

   

0

0

0

0

0

0

∂Ni

∂y
∂Ni

∂x

     

0

0

0

ζ ti
2

 
∂Ni

∂x

0

ζ ti
2

 
∂Ni
∂y

0

Ni

     

0

0

0

0

ζ ti
2

 
∂Ni

∂y
ζ ti
2

 
∂Ni

∂x

Ni

0

   

0

0

0

0

0

0

0

0

  

































  



 T
0

   0
A i 




  















 

u
v
w
θx
θy
θz

 















 E

 i

(A-21)
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Since the shape functions Ni are defined in terms of the curvilinear coordinates (ξ, η), the shape function

derivatives are related to the corresponding Cartesian derivatives in the element E coordinate system, by
using the rules of partial differentiation, as:















 

∂Ni

∂ξ
∂Ni

∂η
∂Ni

∂ζ

 















  =   















 

∂x
∂ξ
∂x
∂η
∂x
∂ζ

   

∂y
∂ξ
∂y
∂η
∂y
∂ζ

   

∂z
∂ξ
∂z
∂η
∂z
∂ζ

 















    















 

∂Ni

∂x
∂Ni

∂y
∂Ni

∂z

 















(A-22)

The first and second rows of the transformation matrix (or Jacobian matrix J) are the tangent vectors to
the surface τ  = constant and the third row is the interpolated values of the nodal normals. (Note the
nodal normals are evaluated by carrying out the cross product of the two tangent vectors at the node
point.)

From Equation A-7 the coordinates in the "I" system are related to the coordinates in the "E" system by
the following:

UI  =  TIE  UE

Therefore, the derivatives are given by:















 

∂Ni

∂x
∂Ni

∂y
∂Ni

∂z

 















  =  Φ   















 

∂Ni

∂ξ
∂Ni
∂η
∂Ni
∂ζ

 















Φ  =  TIE  J −1  =  










 

ϕ11
ϕ21
ϕ31

   

ϕ12
ϕ22
ϕ32

   

0

0

ϕ33

 











(A-23)

Note that 
∂Ni

∂ζ
 and 

∂Ni

∂z
 will be zero when the interpolated normal at the integration point coincides with

the normal to the mid-surface; e.g., in the case of the flat plate (ϕ31 and ϕ32 are zero). The zero terms in ϕ,

i.e., θ 13 and θ 23, result from dot products of perpendicular vectors.

A.3. STRESS-STRAIN RELATIONSHIPS

Stresses are related to the previously defined strains by the elasticity matrix G (where G is partitioned to
give separate membrane stresses).
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








  

σM
σB
τTS

  










   =   










 

G1
0

0
  

0
G2
0

  

0
0

G3










    










  

εM
εB
γTS

  










MEC

   −   










  

εM
εB
0

  










T

σI  =  GI  
εMEC  −  εT

 I

(A-24)

where:

σM Membrane stress vector

σB Bending stress vector

τTS Transverse shear stress vector

G1 Membrane moduli matrix

G2 Bending moduli matrix

G3 Transverse shear moduli matrix

and subscripts "MEC" and "T" refer to mechanical and thermal, respectively.

The membrane-bending coupling moduli matrix G4 will be incorporated into the G matrix following this

discussion of the uncoupled matrices.

All anisotropic, orthotropic and isotropic material properties are supported. The elastic modulus matrix
GM is defined in the material coordinate system and transformed into the user defined element coordi-

nate system by means of a transformation angle, θM, which references the user defined element X-AXIS

or the material coordinate system ID (MCSID) specified by the user. θM is in the X-Y plane of the element

as shown in Figure A-5.

The elastic modulus matrix in the element coordinate system is:

GI  =  U T  GM  U (A-25)

(Note that since the projection of XI onto the XE − YE plane is parallel to XE, no extra transformations are

required between the "E" and "I" systems.)

The transformation matrix for G1, G2 and G4 is:

U1  =  












cos 2θM

sin 2θM

− 2 sinθM cosθM

     

sin 2θM

cos 2θM

2 sinθM cos θM

     

cosθM sinθM

− cosθM sinθM

cos 2θM − sin 2θM












(A-26)

and the transformation matrix for G3 is:
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U2  =  




cosθM
−sinθM

  
sinθM
cosθM





(A-27)

For isotropic materials:

Membrane: G1  =  E
1−ν2   















  

1

SYM

   

ν

ν   

0

0

1−ν
2

  















(A-28)

Bending: G2  =  t 3

12I
  G1 (A-29)

Transverse Shear: G3  =  
ts
t

    










  

β1 
(1−ν)
2K

0
   

0

β2 
(1−ν)
2K

  










(A-30)

where E is the Young’s modulus; t is the element thickness at the corresponding integration point, ν is

the Poisson’s ratio and 
ts
t

 is the transverse shear factor.

YM

Θ M

XE

YE

XM

Figure A-5. Material and User Defined Element Axes
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Note that in matrix G3, the factor "K" is introduced to compensate for the difference in shear distribution

though the thickness, which is parabolic and not constant as indicated by the displacement function. The
value of K  =  1.2 is the ratio of the relevant strain energies. The βi factors, which are derived numeri-

cally, are introduced to compensate for the "locking" of the element due to excessive shear stiffness.

For anisotropic materials:

Membrane: G1  =  










  

G11

SYM
   

G12
G22   

G13
G23
G33

 










(A-31)

Bending: G2  =  t 3

12I
  G1 (A-32)

Transverse Shear: G3  =  
ts
t

   



  
G11
G12

   
G12
G22

  




(A-33)

For orthotropic materials:

Membrane: G1  =  1
1 − ν12 ν21

   










  

E1

SYM
     

ν12 E2
E2      

0

0

G12 ( 1 − ν12 ν21 )
  










(A-34)

Bending: G2  =  t 3

12I
  G1 (A-35)

Transverse Shear: G3  =  
ts
t

   



  
G1z
0    

0

G2z





(A-36)

where E1 and E2 are the Young’s moduli in the principal material axes, ν12 is the major Poisson’s ration;

G12 is the in-plane shear modulus, G1z and G2z are the out-of-plane shear moduli and 
ts
t

 is the transverse

shear factor.

The derivation of the G4 membrane-bending coupling matrix begins by denoting the strains at the

mid-surface as:

εM
 o   =  










 

εx
 o

εy
 o

γxy
 o

 










(A-37)

and the out of plane curvatures as:
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K  =  










 

Kx
Ky
Kxy

 










(A-38)

Therefore, the strains at a distance z above the mid-surface of the element are:

ε  =  εM
 o   −  z K (A-39)

The corresponding 2-D stresses are:

σ  =  GI  

 εM

 o   −  z K 


(A-40)

where GI is a (3x3) matrix of elastic moduli.

The forces and moments per unit length are therefore given by:

F  =  ∫  
z

a

z
b

  σ dz  =  ∫  
z

a

z
b

  GI  

 ε

 o − zK  dz

F  =  t GI  ε
 o  +  t 2 G4 K

(A-41)

M  =  ∫  
z

a

z
b

  σ zdz  =  ∫  
z

a

z
b

  GI  

− z ε o + z 2K  dz

M  =  t 2 G4  ε o  +  I G2 K

(A-42)

where t is the plate thickness and I is the bending inertia. Assuming a linear variation of elastic
properties between top and bottom surface.

G1  =  
1
t
  ∫  

− t
2

 
t
2

  Gdz  =  
Gt + GB

2
(A-43)

G2  =  
1
I
  ∫  

− t
2

 
t
2

  Gdz  =  t 3

12I
  G1 (A-44)

G4  =  
1

t 3  ∫  
− 

t
2

 
t
2

  (−z) Gdz  =  − 




Gt − GB
12





(A-45)
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Note that the membrane-bending stiffness coupling terms vanish for an element whose elastic properties
are symmetric relative to the mean plane of the element.

By assuming that the elastic modulus has a linear variation between the top and bottom surfaces, define:

G  =  G1 +  
ζ

2 

GT − GB


(A-46)

Therefore, from Equations A-31 and A-32:

A. Membrane

G  =  G1 +  
ζ
2

 

 − 12G4  (A-47)

G  =  G1 −  6ζG4 (A-48)

B. Bending

G2  =  
G1t 3

12I

G  =  12I

t 3
 G2 −  6ζG4

(A-49)

Matrix G3 is not affected since transverse shears are assumed to have no coupling action.

Therefore, the stress-strain relationship, allowing for membrane, bending, transverse shear and mem-
brane-bending coupling is:










  

σM
σB
τTS

  










   =   










 

G1
 − 6ζ G4

0
    

 − 6ζ G4
G2
0

    

0

0
G3

  










    










  

εM
ε B
γTS

  










(A-50)

where

σM  =  










 

σx
σy
τxy

 










Membrane stresses

σB  =  










 

σx
σy
τxy

 










 B

Bending stresses
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σTS  =  










 

τyz

τxz

 










Transverse shear stresses

εM  =  










 

εx
εy
γxy

 










Membrane strain

εB  =  










 

εx
εy
γxy

 










 B

Bending strains

γTS  =  










 

γyz

γxz

 










Transverse shear strains

A.4. STIFFNESS MATRIX

The element stiffness matrix is derived by minimizing the total potential energy and is given in numeri-
cal form by employing the Gauss-quadrature integration method:

KE  =  ∑  ∑  ∑  B T  G  B  Wξ Wη Wζ  det  J (A-51)

where (ξ, η, ζ) are the Gaussian integration point coordinates and Wξ, Wη, and Wζ are the associated

weight factors. Det J represents the physical volume of the element as calculated at this point, B is the
strain displacement relationship of Equation A-21 and G is the stress strain relationship of Equation
A-50.

Each element stiffness matrix partition in the element coordinate system, KijEE, is transformed to the

global coordinate system by the following transformation:

KijG  =  TEG
i

 T   KijEE  TEG
i

(A-52)

where TEG
 i
 is determined by relating the element coordinate system to the global coordinate system for

grid i through the basic coordinate system:

TEG
i
  =  TEB

i
  TBG

i
 (A-53)
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A.5. CONSISTENT AND LUMPED MASS MATRICES

The consistent mass matrix terms are evaluated, neglecting the rotational inertias associated with the α
and β degrees of freedom, by the following expression:

Mij  =  ∑ 
n = 1

4

 Ni Nj  ρ  |J| tn (A-54)

where Ni is the shape function for node i, ρ is the mass per unit volume, |J| is the physical area of the

element and tn is the element thickness at the integration point.

The lumped mass matrix, which is calculated at the pseudo center (i.e., the average of the element grid
coordinates), is prorated to the edges based on the distance of the pseudo center from each edge.

The terms of the lumped mass matrix are evaluated using:

Mij  =  ∑ 
n = 1

4

 Ni  ρ  |J| tn (A-55)

The transformation of the mass matrix to the global coordinate system is carried out using the same
transformation matrices as used for the stiffness matrix in Equation A-52.

A.6. STRESS RECOVERY

The element stresses in partitioned form from Equation A-50 are










  

σM
σB
τTS

  










   =   










 

G1
 − 6ζ G4

0
    

 − 6ζ G4
G2
0

    

0

0
G3

  










    




















  

εM
ε B
γTS

  










 MEC

 −   










  

εM
ε B
γTS

  






























  

σM
σB
τTS

  










   =   










 

G1
G4′
0

    

G4′
G2
0

    

0

0

G3

  










    




















  

εM
ε B
γTS

  











 MEC

 −   










  

εM
ε B
γTS

  











 MEC











(A-56)

For a specified grid point temperature, the thermal strain vector is:

εMT  =  










 

εx
εy
γxy

 










 T

  =  αI  
Ti − To


(A-57)
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where αI  = U −1 α M is a vector of thermal expansion coefficients in the element coordinate system. U is

the strain transformation matrix given in Equation A-26 and αM is the vector of thermal expansion

coefficients in the material axes. Ti and To are the specified grid point temperature and mid-surface

(stress-free) temperature, respectively.

For a thermal gradient T ′, the thermal strain vector εBT is:

εBT  =  αI  




ζ t
2

 T ′




(A-58)

For thermal moments MT, the thermal strain vector εBT is:

εBT  =    
− ζ t
2I

  G2
 ′  MT (-A59)

NOTE:  ASTROS does not support thermal gradient or moments so that the above equations are provided
for completeness only.

The in-plane stress vector σz at fiber distance z from the mid-surface is:

σz  =  










 

σx
σy
τxy

 










z

  =  


1
2

 − z
t



  










 

σx
σy
τxy

 










1

  +  


1
2

 + 
z
t



  










 

σx
σy
τxy

 










1

 (A-60)

where the stress vectors σx, σy, τxy  1
T and σx, σy, τxy  2

T are the bottom and top fiber stress vectors,

respectively.

If a temperature Ti is specified at the point where outer fiber stresses are to be calculated, the additional

thermal stress due to the difference between the specified temperature and a temperature that would be
produced by a uniform thermal gradient T ′ or thermal moments MT is calculated using:

∆ σT  =  G2  αI  
Ti − To − T ′ z


(A-61)

for a thermal gradient T′, and

∆ σt  =  − z 
MT
I

  −  G2  α Ti (A-62)
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A.7. FORCE RESULTANTS

The forces at the mid-surface are evaluated by taking the average stress values over the element
thickness:

A. Forces

F  =  










 

Fx
Fy
Fxy

 










  =  


σz1  +  σz2


 
t
2

(A-63)

B. Moments

M  =  










 

Mx
My
Mxy

 










  =  


σz1  +  σz2


 
I
2

(A-64)

C. Transverse Shear Forces

Q  =  










 

Qx

Qy

 










  =  


τz1  +  τz2


 t
2

(A-65)

where stress vectors σz1, σz2 are stresses at the integration points (default option) or at grid points (if

requested) and, similarly, τz1 and τz2 are the transverse shear stresses.

A.8. THERMAL LOAD VECTOR

The thermal load vector is computed as:

PT  =  ∫  
v

 B  G  εT  dv (A-66)

where the load vector PT is defined as:

PT   =   



  

FT
MT

  




(A-67)

where FT and MT are the thermal forces and moments, respectively.

The thermal strain vector is:

εT   =   









  

εM
T

εB
T

  









  =  




  

αM
αB

  



 ∆ T (A-68)

THEORETICAL MANUAL

A-18 THE QUAD4 ELEMENT ASTROS



where εM
T
 and εB

T
 are the thermal membrane and bending strains, and correspondingly αM and αB are

the thermal coefficients of expansion for membrane and bending. ∆ T is dependent on the temperature
loading being specified.

A. For a specified grid point temperature the thermal membrane strain vector, εM
T
, is:

εM  =  αM  

Ti − To


(A-69)

Ti  =  Grid point temperature

To  =  Reference (stress-free) temperature

B. For a thermal gradient, the thermal bending strain vector, εB
T
, is:

εB  =  αB  



− 

ζt
2

 T ′




(A-70)

C. For thermal moments, the thermal bending strain vector, εB
T
, is:

εB  =  G2  MT  
τ t
2I

(A-71)

NOTE:  ASTROS does not support thermal gradients or moments so that the above equations are
provided for completeness only.

A.9. LAMINATED COMPOSITE MATERIALS

The capability to model a stack of layers with a single QUAD4 element is detailed including the computa-
tion of equivalent "single layer" properties, i.e., membrane, bending transverse shear and membrane-
bending coupling. The recovery of element forces, layer and interlaminar shear stresses and the
computation of ply failure indices is also described in the following overview of theory.

A.9.1.  Overview of Theory

The calculation of the "overall" properties for the laminated composite elements is based on the classical
lamination theory with the following assumptions:

A. Each of the lamina is in a state of plane stress.

B. The laminate is presumed to consist of perfectly bonded lamina.

C. The bonds are presumed to be infinitesimally thin and non-shear deformable. That is,
the displacements are continuous across the lamina boundaries so that lamina can
not slip relative to one another. Thus, the laminate behaves as a single layer with
"special" properties.

The material properties of laminated composite materials are reflected in the following force-strain
relationship:
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








  

F
M
V

  









   =   












  

t G1

t 2 G4

0

    

t 2 G4

I G2

0

    

0

0

ts G3

  












    










  

εM − εM
 T

K − K T

γ

  










(A-72)

where

F  =  










  

Fx
Fy
Fxy

 










Membrane forces per unit length.

M  =  










  

Mx
My
Mxy

 










Bending moments per unit length.

V  =  










  

Vx

Vy

 










Transverse shear forces per unit length.

and the remaining terms have been defined previously.

The G1, G2, and G4 terms are defined by the following:

G1  =  1
t
 ∫  GE  dz

G2  =  
1
I
 ∫  z 2  GE   dz

G4  =  
1
t
 ∫  − z  GE   dz

(A-73)

The limits on the integration are from the bottom surface to the top surface of the laminated composite.
The elasticity matrix GE has the following form for isotropic materials:

GE  =  















 

E
1 − ν 2

SYM    

ν E

1 − ν 2

E

1 − ν 2    

0

0

0

 















(A-74)

G  =  
E

2(1 + ν)
(A-75)

For orthotropic materials, matrix [GE] is:
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GE  =  

















 

E1

1 − ν1ν2

SYM    

ν1E2

1 − ν1ν2
E2

1 − ν1ν2
   

0

0

G12

 

















(A-76)

Equation A-73 may be rewritten as:

Gij
1
  =  1

t
  ∑ 
k = 1

N

  G
__

ij
 k   


Zk − Zk − 1



Gij
2
  =  

1
3I

  ∑ 
k = 1

N

  G
__

ij
 k   


Zk

 3 − Zk − 1
 3 



Gij  =  − 
1

2t 2  ∑ 
k = 1

N

  G
__

ij
 k   


Zk

 2 − Zk − 1
 2 



(A-77)

where G
__

ij
 k  is the reduced moduli matrix evaluated for each lamina k after transforming the lamina

property matrix from the fiber to the element material axes.

Zk and Zk − 1 are the top and bottom distances of lamina k from the geometric middle plane of the

laminate, as illustrated in Figure A-6, and N is the number of laminae (or plies). Note that the plies are
numbered serially starting with 1 at the bottom layer. The bottom layer is defined as the surface with the
largest -z value in the element coordinate system. If the option to model membrane-only elements is
exercised, matrices G2, G3, and G4 are set to zero.

If the user defined element axis is not coincident with the element material axis, the user specified
transformation angle θM, which references the element X-axis, is added to the layer orientation angle.

The property matrices G1, G2, and G4 are then transformed to the user defined element axis using the

following equation:

GE  =  U T  GM  U (A-78)

where

U  =  










   

cos 2θ
sin 2θ

− 2 sinθ cosθ
   

sin 2θ
cos 2θ

2 sinθ cosθ

   
cosθ sinθ

− cosθ sinθ
cos 2θ − sin 2θ










(A-79)

The transverse shear flexibility G3, matrix is defined by:
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G3  =  



  
G11
G12

   
G12
G22





(A-80)

and the corresponding matrix transformed into the user-defined element coordinate system is given by:

G  =  W T  GM  W (A-81)

where

W  =  



  

cosθ
− sinθ  

sinθ
cosθ





(A-82)

The derivation of the transverse shear flexibility matrix G3 for the laminate is considered next.

The mean value of the transverse shear modulus, G, for the laminated composite is defined in terms of
the transverse shear strain energy, U, through the depth as:

U  =  
V 2

2Gt
  =  1

2
  ∫  τ

 2 ( z )
G ( z )

  dz (A-83)

A unique mean value of transverse shear strain is assumed to exist for both the x- and y-components of
the element coordinate system, but for ease of discussion, only the evaluation of an uncoupled x-compo-
nent of the shear moduli will be illustrated here. From Equation A-83, the mean value of transverse
shear modulus is written in the following form:

Zk−1
Zk

N

+ Z

+ 
T
2

Geometric Mid-Plane

1

2

K

Figure A-6. Geometry of an N-Layered Element
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1
Gx

  =  
t

Vx
 2  ∑ 

i = 1

N

 ∫  
Z

i − 1

 Z
i

 



τzx (x)


 2

( Gx ) i

  dz (A-84)

where G is an "average" transverse shear coefficient used by the element code and ( Gx ) i
 is the local

shear coefficient for layer i. To evaluate Equation A-84, it is necessary to obtain an expression for τzx (z).

This is accomplished by assuming that the x- and y-components of stress are decoupled from one another.
This assumption allows the desired equation to be deduced through an examination of a beam of unit
cross-sectional width.

The equilibrium conditions in the horizontal direction and for total moment are:

∂τxz

∂z
  −  

∂σx

∂x
  =  0 (A-85)

Vx  +  
∂ Mx

∂x
  =  0 (A-86)

If the location of the neutral surface is denoted by zx and ρ is the radius of curvature of the beam, the

axial stress, σx, is expressed in the form:

σx  =  
Ex



 z
_

x − z


(EI )x
  Mx (A-87)

Equation A-87 is differentiated with respect to x and combined with Equations A-85 and A-86. For
constant Ex, the result is integrated to yield the following expression:

Yx Mx

X

Z

σx + dσx
σx

τzx

τxz

τxz
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τxz  =  Ci + 
Vx

(EI )x
  




 z
_

x z − 
z 2

2




 Ex

i
            zi − 1 < z < zi (A-88)

Equation A-88 is used in the analysis of n-ply laminates because sufficient conditions exist to determine
the constants Ci  (i = 1, 2, ..... n) and the "directional bending center," zx. For example, consider the

following laminated configuration:

At the bottom surface (i = 1, z = zo, and τxz = 0), therefore:

C1 + 
− Vx

(EI)
x
  




 z
_

x zo − 
zo

 2

2




 Ex

1
(A-89)

and for the first ply at the interface between plies i = 1 and i = 2  

 z = z1 


:



τxz

 1
  =  

Vx
(EI)

x
  


 zx 

z1 − z0

  − 1

2
  


z1

 2 − z0
 2 


 

 Ex

1
(A-90a)

At this interface between plies i = 1 and i = 2  :



τxz

 2
  =  C2  +  

Vx

(EI )x
  




z
_

x z1 − 
z1

 2

2
 



 Ex

2
(A-90b)

and since 

τxz

2
  =  


τxz1

 at  z = z1:

C2  =  

τxz 1

   −  
Vx Ex2

(EI )x
   


z
_

x z1 − 1
2

  z1
 2




(A-91)

Then, in the ply, z1 < z < z2, the shear is:

Z

X

i = 3

i = 2

i = 1
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τxz( z)  =  

τxz 1

  +  
Vx Ex2

(EI
___

 )x

  

 z
_

x

 z − z1


 − 1

2
  z

 2 − z1
 2 


 


(A-92)

In general, for any ply zi − 1 < z < zi, the shear is:

τxz( z)
i  =  


τxz i − 1

  +  
Vx Exi

(EI
___

 )
x

  

 z
_

x

 z − zi − 1


 − 

1
2

 

 z 2 − zi − 1

 2  

 


(A-93)

At any ply interface, zi, the shear is therefore:



τxz

 i
  =  

Vx

( EI
___

 )x

    ∑ 
j = 1

i

 Exj  Tj  



 z
_
 − 1

2
 

zj + zj − 1


 


(A-94)

where Tj = zj − zj − 1.

Note that the shear at the top face, 

τxzn

, is zero and therefore:



τxz

 n
  =  

Vx
( EI )

x
    







 z
_

x  ∑ 
j = 1

n

 Exj  Tj  ∑ 
j = 1

n

 Exj  Tj  



zj + zj − 1


2







  =  0 (A-95)

Equation A-95 proves that if zx is the bending center, the shear at the top surface must be zero.

A better form of Equation A-93, for this purpose, is:

τxz ( z )i  =  
Vx Exi

(EI
___

)x

  

 fxi + z

_
 

z − zi − 1


  −  1

2
 

z 2 − zi − 1

 2 

 


(A-96)

where

fxi  =  
1

Ex
i

     ∑ 
j − 1

i − 1

   Ex
j
  Tj  




 z
_

x − 
1
2

 

 zj + zj − 1


 


(A-97)

Substituting Equation A-96 into Equation A-84 yields:

1
Gx

  =  
T

( EI
___

 )
x
 2     ∑ 

i = 1

n

  1
Gx

i

  Rx
i

(A-98a)
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where

Rx
i
  =  


Exi

 2
  Ti  




 

 fxi + 


 z
_

x − zi − 1

 Ti − 1

3
 Ti

 2


 fxi + 


 
1
3

 

 z
_

x − 2 zi − 1

 − 

1
4

 Ti 



 z
_

x Ti
 3




   

 + 


 
1
3

 zi − 1
 3  + 

1
4

 zi − 1 Ti + 1
20

 Ti
 3



 Ti

 3 


(A-98b)

This expression for the inverse shear modulus for the x-direction is generalized to provide for the
calculation of each term in the two-by-two matrix of shear moduli as:

G
__

ki  =  






  T

EIkk
 2     ∑ 

i = 1

n

 Gkl
 i −1

  Rki 







 −1

(A-99)

where

k  =  1, 2
l  =  1, 2

Note that if no shear is given, G i − 1

  =  0, and also  that, in Equation A-99:

( EI
___

 )11
  =  1, 1  term of   I ⋅ G2

∗

( EI
___

 )22
  =  2, 2  term of   I ⋅ G2

∗

where G2
∗ is calculated in the same manner as G3 except that Poisson’s ratio is set to zero. The moduli for

individual plies are provided through user input. Because G12  ≠  G21, in general, an average value is

used for the coupling terms.

G3  −  













  

G11

G
__

12
AVG

     

G
__

12
AVG

G22

  













(A-100)
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A.9.2.  Element Layer Stress Recovery

The linear strain variation is given by:

εx  =  εM −  z K (A-101)

where

εx Layer strain vector in the element coordinate system.

εM Reference surface strain in the element coordinate system.

K Reference surface curvatures in the element coordinate system.

z Distance of the mid-surface of the layer k from the laminate reference surface.

The individual layer stress vector in the fiber coordinate system is:

σL  =  GL  T  εx (A-102)

where

σL Layer stress vector in the fiber coordinate system.

GL Stress-strain matrix in the fiber coordinate system.

T Transformation matrix to transform strains from element coordinate
system to fiber coordinate system.

εx Layer strain vector in the element coordinate system.

For element temperature and/or thermal gradients, the strain vector has to be corrected for thermal
effects before applying Equation A-103:

εx  =  ε ′x  −  α  ( T + zT ′ ) (A-103)

and for thermal moments

εx  =  εx  −  εx
 T (A-104)

where

ε ′x Mechanical strains.

α Thermal coefficients of expansion in the element coordinate system.

T Element temperature.

T ′ Element thermal gradient.

z Distance from the middle of the layer to the laminate reference surface.

εx
 T Layer strains due to thermal moments in the element coordinate system.
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The thermal strain vector due to applied thermal moments is determined by substituting for M in

Equation A-73 and solving for the reference surface strains and curvatures, ε T
M and K T, respectively.

A.9.3.  Interlaminar Shear Stresses

The interlaminar shear stress τyz, τxz can be computed at any ply interface from Equation A-96.

A.9.4.  Force Resultants

Forces and moments for the element are computed using:

F  =  ∑ 
i = 1

N

  σx  Ti

i = 1,  N  (number of layers)

M  =  ∑ 
i = 1

N

  − zi  Ti  σx

(A-105)

where

F In-plane force resultants.

M Out-of-plane moments.

σx Stresses in the element coordinate system.

Ti Layer thickness.

zi Distance from the middle of the layer to the laminate reference surface.

A.9.5.  Failure Indices

Failure indices assume a value of one on the periphery of a failure surface in stress space. If the failure
index is less than one, the lamina stress is interior to the periphery of the failure surface and the lamina
is assumed "safe" and if it is greater than one the lamina is assumed to have "failed."  The failure indices
represent a phenomenological failure criterion, because only the occurrence of failure is predicted.

The analytical definition of a failure surface in stress space for a lamina subjected to biaxial (planar)
states of stress is provided via the following failure theories.

HILL

HOFFMAN

TSAI-WU

MAXIMUM STRESS

MAXIMUM STRAIN
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In the analysis of laminated composites, which are typically orthotropic materials (possibly exhibiting
unequal properties in tension and compression), the strength of orthotropic lamina is a function of body
orientation relative to the imposed stress. In order to determine the structural integrity of the lamina, a
set of intrinsic strength properties (allowable stresses or allowable strains) in the principal material
directions are defined as:

Xt Ultimate uniaxial tensile strength in the fiber direction,

Xc Ultimate uniaxial compressive strength in the fiber direction,

Yt Ultimate uniaxial tensile strength perpendicular to the fiber direction,

Yc Ultimate uniaxial compressive strength perpendicular to the fiber direction,

S Ultimate planar shear strength under pure shear loading,

Et Ultimate uniaxial tensile strain in the fiber direction,

Ec Ultimate uniaxial compressive strain in the fiber direction,

Ft Ultimate uniaxial tensile strain perpendicular to the fiber direction,

Fc Ultimate uniaxial compressive strain perpendicular to the fiber direction, and

Es Ultimate planar shear strain under pure shear loading.

Each of these terms is an algebraically positive value. For most composite materials, the planar shear
strengths and strains are equal for positive and negative shear loadings.

The five failure theories and a bonding failure index are now described:

HILL’S THEORY

 
σ1

 2

X 2  +  
σ2

 2

Y 2  −  
σ1 σ2

X 2   +  
τ12
 2

S 2  =  FAILURE    INDEX  (FI) (A-106)

and X = Xt if σ1 is positive, and Xc if σ1 is negative; similarly for Y. For the interaction term,

σ1 σ2

X2  ,   X = Xt  if the product σ1 σ2 is positive X = Xc otherwise.

HOFFMAN’S THEORY





1
Xt

  −  
1
Xc




 σ1  +  



1
Yt

  −  
1
Yc




 σ2  +  

σ1
 2

Xt Xc

 + 
σ2

 2

Yt Yc

 + 
τ12
 2

S 2 + 
σ1 σ2

Xt Xc

  =  FI (A-107)

Note that this theory takes into account the difference in the tensile and compressive allowable stresses
by using linear terms in the failure equation.
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TSAI-WU THEORY

This quadratic interaction theory allows for the strength predictions wherein interaction among stress
components can be considered in determining strengths in a biaxial field. Thus, in the case of an
orthotropic lamina in a general state of planar stress:

F1 σ1  +  F2 σ2  +  F11 σ1
 2  +  F22 σ2  +  2F12 σ1 σ2  +  F66 τ12

 2   =  FI (A-108)

F1  =  
1

Xt

  −  
1

Xc

         F2  =  
1

Yt

  −  
1
Yc

         F11  =  
1

Xt Xc

         F22  =  
1

Yt Yc

         F66  =  
1

S 2 (A-109)

and F12 needs to be determined experimentally, from a biaxial test. However, satisfactory results may be

obtained by setting it to zero.

MAXIMUM STRESS

Failure is assumed to occur when any one of the stress components is equal to its corresponding intrinsic
strength property. In mathematical form, the Maximum Stress theory is given by:

σ1  ≥  Xt,  σ1  >  0  ;  σ1  ≤  − Xc,  σ1  <  0

σ2  ≥  Yt,  σ2  >  0  ;  σ2  ≤  − Yc,  σ2  <  0

τ12  ≥  S,  τ12  >  0  ;  τ12  ≤  − S,  τ12  <  0

(A-110)

where the intrinsic  strength properties are as defined previously.

MAXIMUM STRAIN

The Maximum Strain theory is analogous to the Maximum Stress theory. Failure is assumed to result
when any one of the strain components is equal to its corresponding intrinsic ultimate strain. In mathe-
matical form the Maximum Strain theory is given by:

ε1  ≥  Et ,  ε1  >  0  ;  ε1  ≤  − Ec ,  ε1  <  0

ε2  ≥  Ft ,  ε2  >  0  ;  ε2  ≤  − Fc ,  ε2  <  0

γ12  ≥  Es ,  γ12  >  0  ;  γ12  ≤  Es ,  γ12  <  0

(A-111)

where the intrinsic ultimate strains are as defined previously.

FAILURE INDEX OF BONDING

The failure index of bonding material is calculated as the maximum interlaminar shear stress divided by
the allowable bonding stress.
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A.10.  CORRECTION OF OUT-OF-PLANE SHEAR STRAIN

The typical formulation for a QUAD4 type finite element follows a standard bilinear isoparametric
theory, with directional reduced integration for out-of-plane shear strain. However, this formulation has
been found to be inadequate when the geometry of the element is irregular, and a correction defined
herein has been implemented in ASTROS to correct this problem.

The modification is based upon the theory presented by Hughes and Tezdayar (Reference A-1), but is
generalized to include non-planarity of the element, and special features to accommodate the ASTROS
structure. The formulation enforces constant shear along each edge of the element, eliminating the need
to perform reduced integration.

The formulation of this modification consists of establishing strain-displacement relationships in the
element coordinate system. It involves six degrees of freedom (dof ), the rotational part of which will be
modified later to include the singularity about the normal to the mid-surface.
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A.10.1. Geometric Variables

The following terms are defined for each edge of an irregular-shaped, non-planar element:

A Unit Normal Vector ( e
→
   ) in the direction of the next node as illustrated;

A Unit Normal Vector ( n
→

   ) which is a normalized average of the nodal normals to the mid-surface along
that edge;

Length of each edge 

 hi 

 ; and cosine of the internal angle at each corner 

 αi 

 .

e 4

e 3

e 2

e 1

h 3

h 4

h 1

h 2

4
3

21

4

3

21
n 1

n 2

n 3

n 4
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A.10.2. Edge Shears and Shear Vectors

Given the following numbering sequence:

At the middle of each edge, the constant shears parallel to edges a
__

, b
__
, c

_
 and d

__
, respectively, are:

ga
__  =  1

ha
  n→a  ⋅    


 
→
Ub  −  

→
Ua 


  −  1

2
  e→a  


 θ
→

b  +  θ
→

a 


gb
__  =  

1
hb

  n→b  ⋅    

 
→
Ud  −  

→
Ub 


  −  1

2
  e→b  


 θ
→

d  +  θ
→

b 


gc
_  =  

1
hc

  n→c  ⋅    
 
→
Ua  −  

→
Uc 

  −  
1
2

  e→d  

 θ
→

a  +  θ
→

c 

gd
__  =  

1
hd

  n→d  ⋅    

 
→
Uc  −  

→
Ud 


  −  

1
2

  e→d  

 θ
→

c  +  θ
→

d 


(A-112)

where u→ and θ
→
  are the vectors of translations and rotations at each node, respectively, in the element

coordinate system.

The shear vector γ→b  at node (b) is given by:

γ→b  =  
1

1 − αb
 2  


 g b

__ + g b
__ αb


  e→b  +  

1

1 − αa
 2  


 g b

__ + g b
__ αb


  e→a (A-113)

or

d
__

a
__

d

2

1 3

4

a

b

c

b
__

c
__

THEORETICAL MANUAL

ASTROS THE QUAD4 ELEMENT A-33



γ→b  =  

 − 

1


1 − αb

 2

 ha

  

 e→a + αb e→b 


  


 n→a ⋅ U

→
a 





  +  


 

1

1 − αb

 2

 ha

  

 e→a + αb e→b 


  


 n→a ⋅ U

→
b 






− 

 1

1 − αb

 2

 hb

  

 e→b + αb e→a


  


n→b ⋅ U

→
b




  +  


 

1


1 − αb

 2

 hb

  

 e→b + αb e→a


  


n→b ⋅ U

→
d





− 

 

1

2 

1 − αb

 2

  


 e→a + αb e→b 


  


 e→a ⋅ θ

→
a 






− 

 

1

2 1 − αb
 2


  


 e→a + αb e→b 


  


 e→a ⋅ θ

→
a 


  +  


 e→b + αb e→a 


  


 e→b ⋅ θ

→
b 






− 

 

1

2 

1 − αb

 2

  


 e→b + αb e→a 


  


 e→b, θ

→
d 






(A-114)

and similarly for the other nodes, by permutations of the a, b, c and d subscripts.

A.10.3. Nodal Contributions of Shear Strain

The contribution of each node to the total shear strain γ
→
T evaluated at an integration point is:

→
γT  =  ∑ 

i = 1

4

 Ni 
→
γi (A-115)

The "pseudo-contribution" of each edge to the total shear strain (G) has the following form:

G
→

 a
__  =  

Na

1 − αa
 2  


 e→a + αa e→c 

  +  
Nb

1 − αb
 2  


 e→a + αb e→b 



G
→

 b
__  =  

Nb

1 − αb
 2  


 e→b + αb e→a 


  +  

Nd

1 − αd
 2  


 e→b + αd e→d 



G
→

 c
_  =  

Nc

1 − αc
 2  


 e→c + αc e

→
d 


  +  

Na

1 − αa
 2  


 e→c + αa e→a 



G
→

 d
__  =  

Nd

1 − αd
 2  


 e→d + αb e→b 


  +  

Nc

1 − αc
 2  


 e→d + αc e

→
c 

(A-116)

Hence, the columns of the B matrix partition for shear, corresponding to node b, BSb, are:
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











BS
___

bi  =  
na

i

ha
  G

→
a  −  

nb
i

hb
  G

→
b

BS
___

bj  =  
ea
i

2
  G

→
a  −  

eb
i

2
  G

→
b

 













      
i = 1, 2, 3
j = 4, 5, 6

(A-117)

A.10.4. Transformations

The following transformations have to be performed before the preceding formulation can replace the
existing B matrix generation for out-of-plane shear.

BSb
 (3x6)

  =  TIE (3x3)
  BS

___
b

 (3x6)
   







  

I

0
       

0

TEE
 (6x6)








(A-118)

where
TIE Is the orthogonal transformation between integration points and the element coordi-

nate system, required since all the strains are calculated in the I system.

I Is a 3x3 identity matrix.

TEEIs the 3x3 transformation which takes into account the following facts

A.

Hughes’ convention for rotations is different than the one implemented in ASTROS; and,

B.

The rotation about the normal to the mid-surface at each grid point is singular.

If NV is the normal vector at a given grid point, then:

TEE  =  










 

0

NV 3

 − NV 1
   

 − NV 3

0

NV 1
   

NV 2

 − NV 1

0

 










(A-119)
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APPENDIX B. 

THE FAST FOURIER TRANSFORM

The equation of motion for a transient response dynamic analysis is given by:

M u
..
  +  B u

.
  +  K u  =  P (t) (B-1)

Where M, B and K are the mass matrix, the damping matrix and the stiffness matrix, respectively. P ( t )
is the external load vector in the time domain, and u is the response displacement vector. Here, Equation
B-1 is assumed reduced to the solution set degrees-of-freedom. In general, Equation B-1 can be solved by
numerical integration. However, another method for solving this equation is the Fourier Transform (FT)
technique. In this method, Equation B-1 is first transformed into the frequency domain with the Fourier
Transform, the response displacement vector is computed in the frequency domain, and finally the
frequency domain displacement vector is transformed back into the time domain by using the Inverse
Fourier Transform.

In general, an external load vector P ( t ) can be transformed to the frequency domain using:

P ( ω )  =  ∫  
o

 ∞
 P ( t )  e−iωt dt (B-2)

Equation B-1 in the frequency domain is then


 − ω2 M  +  i ω B  +  K   u

__
  =  P ( ω ) (B-3)

After the displacement vector u
__

  is obtained by the frequency response method, it can be transformed
back into the time domain by

u ( t )  =  1
π

  ∫  
o

 ∞
  u

__
 ( ω )  e iωt   dω (B-4)
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For certain types of problems, the use of the Fourier Transform method offers many advantages over
numerical integration methods. For periodic external load vectors, the FT method can be used to obtain
the accumulated effects on the response displacement vector and, at the same time, minimize the
computing costs. Even for nonperiodic external loads, this method may be more efficient than a numeri-
cal integration approach. It should be stressed that while the Fourier Transform is presented here in
terms of performing transient response of structures, the method has wide applicability. Therefore, the
availability of FT-based algorithms in ASTROS provides a building block for other disciplines.

B.1.  DISCRETE FOURIER TRANSFORM

There are two difficulties in practical applications of the Fourier Transform method as described by
Equations B-2 through B-4. First, the time function P(t) is continuous; however, in practice, its values are
known only at a finite number of time points. Second, while the integration limits in Equation B-2 are
from zero to infinity, practical applications must have a finite time duration. Therefore, the Fourier
Transform method needs to be reformulated such that it can be managed practically. This form is called
the Discrete Fourier Transform (DFT). A summary of the theory of the DFT is given here while Refer-
ences B-1 and B-2 provide more detailed information.

For a function P ( t ) defined over the time duration T and with N sample points at which the values of
the function P ( t ) are known, i.e.,

Pn  =  P ( tn ) (B-5)

where

tn  =  n∆ t,   n  =  0, 1, 2, ..., N

∆ t  =  
T
N

three important parameters in the frequency domain can be derived: the incremental frequency, ∆ ff, the

number of frequency steps Nf, and the frequency duration, Ff :

∆ ff  =  
1
T

Nf  =  
N
2

Ff  =  Nf ∆ ff

(B-6)

A key requirement for the discrete transform to be valid is that the excitation be periodic "in the
window," i.e., the time duration T. This is a rather special case, but a wider range of cases can be
considered by recognizing that a response that dies out within the window could be considered periodic
since the responses in successive periods are uncoupled. Clearly, for the response to die out, the excita-
tion must be zero for the last portion of the period T.
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The DFT and IDFT (Inverse DFT) can now be defined as:

F ( ωm )  =  
1
N

     ∑ 
n = 0

N − 1

   f ( tn ) e−iω
m

 t
n (B-7)

f ( tn )  =  F (0)  +  2    ∑ 
m = 1

N
f
 − 1

  Re  


 F ( ωm ) ei ω

m
 t

n
 


(B-8)

where

ωm  =  2π ∆ ff m

tn  =  n ∆ t
(B-9)

F ( ωm ) is typically complex although the F(0) term is seen, from Equation B-7, to be real.

B.2.  FAST FOURIER TRANSFORMS

The evaluation of the DFT and the IDFT of a function P ( t ) as given by Equations B-7 and B-8 are
accomplished by a numerical technique which is known as the Fast Fourier Transform (FFT). This
procedure is very powerful in that it reduces the number of multipliers to compute the transformed

quantity from 
N2

2
 to  N  log 2 N. Figure B-1 shows a comparison of computation times for FFT and a brute

force approach.  
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The following is a conceptual description of the FFT. Additional details are found in References B-2 and
B-3. The restriction is first made that the number of time points is a power of two.

N  =  2 M (B-10)

where M is an integer. The transform of Equation B-7 can be written as:

F ( m )  =  ∑ 
n = 0

N = 1

  f ( n )  W n
 mn (B-11)

where WN  =  e
 
−2 π i

N  and the relations of Equation B-6 have been used to replace ωm tn with 
( 2π mn )

N
.

The integers m and n can be expressed in binary form as:

m  =  mo  +  2m1  +  4m2  … +  2 m−2  mm−2

n  =  no  +  2n1  +  4n2 … +  2 M−1  nM−1

(B-12)

where the values of mi are either 0 or 8. For illustrative purpose, set N = 8, so  that M = 3, then

m  =  mo  +  2m1

n  =  no  +  2n1  +  4n2

(B-13)

and Equation B-11 becomes

F ( m )  =  ∑ 
n

2
 = 0

1

     ∑ 
n

1
 = 0

1

     ∑ 
n

0
 = 0

1

   f ( n )  W8
   ( m

o
 + 2m

1
  )  ( n

o
 + 2n

1
 + 4n

2
  ) (B-14)

If the exponential term is factored by powers of two then

W8
  mn  =  W8

  8m
1
 n

2    W8
  4m

0
 n

2    W8
  2m

1
 

 m

0
  +  2m

1

    W8

  n
0
 

 m

0
  +  2m

1

 (B-15)

The first factor on the right hand side is unity since

W 8
 8I  =  e

 − 
2πi
8

  8I
  =  1 (B-16)

where I is an integer. For the remaining terms, the ni coefficients are segregated so that three intermedi-

ate summations can be defined as:
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F 1 ( m0 , n1 , n0 )  =  ∑ 
n

2
 = 0

1

  f ( n2 , n1 , n0 )  W8
 4 n

2
 m

0 (B-17)

where f ( n2 , n1 , n0 ) is f ( n ) in Equation B-14. Note that each of the eight terms on the left-hand side is

computed from two multiply operations. In a similar fashion, a second summation is

F 2 ( m0 ,  m1 ,  n0 )  =  ∑ 
n

1
 = 0

1

  F 1 ( m0 ,  m1 ,  n0 )  W 8
 2n

1
 ( m

0
 + 2m

1
 ) (B-18)

and the third and final summation is

F 3(  m0 ,  m1 )  =  ∑ 
n

0
 = 0

1

 F 2 (  m0 , m1 , n0  )  W 8
 n

0
 (  2m

1
 + m

0
 ) (B-19)

This final term is the F ( m ) of Equation B-14. While the process has been shown for N = 8, it does

generalize to N = 2 M.

B.3.  IMPLEMENTATION CONSIDERATIONS

To control the solution of a transient response problem using the FFT, two sets of parameters must be
input by the user. The first set contains the parameters used to control the FFT, which are:  T, the total
time duration and N, the number of time points. With T and N determined, the characteristics in the
frequency domain are given by Equation B-6. The time points and their corresponding frequency list are
given by Equation B-9.

The second set of parameters is the frequency list used in solving Equation B-3 to obtain the response
vector u (ω). This frequency list is:

ω  =  2π f0 ,  2π f1 ,  2π f2 , … , 2π fn (B-20)

The frequency lists ωm and ω are not necessarily equal. While setting ωm = ω will give the most accurate

response, it may not be efficient. To give the user complete control over accuracy versus efficiency, two
alternative methods are used to input the frequency list ω. For the first method, the frequency list ω is
input via two parameters:

R∆ f  =  
∆ f
∆ ff

Rf  =  
F
Ff

(B-21)
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where ∆ f and ∆ ff are incremental frequencies used in the frequency response analysis and the FFT,

respectively. And F and Ff are total frequency durations used in the frequency response analysis and the

FFT, respectively. If R∆f  =  1.0 and Rf  =  1.0, then the frequency lists ω and ωm are equal, which gives

the most accurate response. For greater efficiency, R∆f values greater than one may be used.

The frequency list ω determined by Equation B-21 has an equal frequency interval. In some cases, the
user may desire a frequency list with an unequal interval. Therefore, an input option is provided to allow
the user to input a completely independent frequency list ω.

If the frequency lists ω and ωm are not equal, the differences between these two lists are reconciled by

either linear or cubic interpolation, with linear interpolation the default.
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