
Advanced CAE Applications for Professionals
Software that works — for you.SM

eShell User’s Manual
Version 20.1

UNIVERSAL ANALYTICS, INC.

Publication EB-001

© 1992-1999 UNIVERSAL ANALYTICS, INC.
Torrance, California USA

All Rights Reserved
First Printing, November 1995

Second Printing, December 1997
Third Printing, February 1999

Restricted Rights Legend:

The use, duplication, or disclosure of the information contained in this document is subject to the
restrictions set forth in your Software License Agreement with Universal Analytics, Inc. Use, duplica-
tion, or disclosure by the Government of the United States is subject to the restrictions set forth in
Subdivision (b)(3)(ii) of the Rights in Technical Data and Computer Software clause, 48 CFR
252.227-7013.

The information contained herein is subject to change without notice. Universal Analytics Inc. does
not warrant that this document is free of errors or defects and assumes no liability or responsibility to
any person or company for direct or indirect damages resulting from the use of any information
contained herein.

UNIVERSAL ANALYTICS, INC.

3625 Del Amo Blvd., Suite 370
Torrance, CA 90503
Tel: (310) 214-2922

FAX: (310) 214-3420

TABLE OF CONTENTS

1. INTRODUCTION

THE eBase SOFTWARE SUITE . 1-1

DATA MODELING . 1-2

eBase ORGANIZATION . 1-2

DIRECTORY HIERARCHY . 1-3

SUBSCRIPTED ENTITIES . 1-4

THE MULTISCHEMATIC MODEL: ENTITY CLASSES . 1-4

Relational Entities . 1-5

Matrix Entities . 1-5

Freeform Entities . 1-6

Stream Entities . 1-6

SYNTAX OF COMMANDS . 1-7

What is a Command? . 1-7

Keywords . 1-7

Abbreviating Keywords . 1-7

Simple Metasymbols . 1-7

Optional Command Parts . 1-7

Command Part Selectors . 1-8

Metasymbol Suffixes . 1-8

Complex Metasymbols . 1-8

Important Information . 1-9

NAMING eBase OBJECTS . 1-9

Basic Naming Rules . 1-9

eShell User’s Manual

TABLE OF CONTENTS i

Path Naming Rules . 1-9

Entity Naming Rules . 1-10

File Naming Conventions . 1-10

USING THE eShell PROGRAM . 1-11
Getting Started . 1-11

Online HELP . 1-11

Accessing Databases . 1-12

eQL Command Entry . 1-13

Symbol Substitutions . 1-15

DATABASE PROTECTION . 1-16

DATABASE INTEGRITY . 1-17

WORKING WITH MULTIPLE DATABASES . 1-17

MOVING DATABASES BETWEEN COMPUTERS . 1-17

eShell LIMITATIONS . 1-17

Reserved Words . 1-17

Size Limitations . 1-18

USING THE TUTORIAL . 1-18

2. DIRECTORIES AND ENTITIES

REFERENCING DIRECTORIES IN COMMANDS . 2-1

CREATING DIRECTORIES . 2-2

THE WORKING DIRECTORY . 2-2

REMOVING DIRECTORIES . 2-3

LISTING DIRECTORIES . 2-3

Using a Path Specification . 2-3

The Entity Directory . 2-5

DESCRIBING DATABASE ENTITIES . 2-6

RELATIONS WITH INDEXED ATTRIBUTES . 2-7

RELEASING A SUBSCRIPTED VERSION . 2-8

MANIPULATING ENTITIES . 2-8

3. CREATING eBase ENTITIES

CREATING RELATIONS . 3-1

THE "NULL" FIELD CONCEPT . 3-3

CREATING MATRICES . 3-3

CREATING FREEFORM ENTITIES . 3-5

CREATING STREAM ENTITIES . 3-6

CREATING SUBSCRIPTED ENTITIES . 3-6

User’s Manual eShell

ii TABLE OF CONTENTS

4. RETRIEVING DATA FROM RELATIONS

THE SELECT COMMAND . 4-1

THE OUTPUT FORMAT . 4-3

ATTRIBUTES WHICH ARE ARRAYS . 4-3

REFERENCING A PATH DURING THE QUERY . 4-3

QUALIFYING THE SELECTION . 4-4

SELECTING FROM A SET . 4-6

COMPARING TO A SET . 4-6

USING ARITHMETIC EXPRESSIONS . 4-6

THE JOIN OPERATION . 4-8

GROUPING DATA DURING THE SELECTION . 4-11

SORTING DATA DURING THE SELECTION . 4-12

THE SUBQUERY . 4-13

GROUP OPERATORS . 4-15

 INTERSECTION, UNION AND DIFFERENCE . 4-18

5. GRAPHING RETRIEVED DATA

THE PLOTTING WINDOWS . 5-1

Selecting the Plot Window . 5-2

THE PLOTTING COMMANDS . 5-2

THE XYPLOT COMMAND . 5-2

THE GRAPH ELEMENTS . 5-4

Symbols and Lines . 5-4

Titling . 5-4

Customizing the Axes . 5-5

REFERENCING A PATH DURING THE QUERY . 5-7

QUALIFYING THE SELECTION . 5-8

SELECTING FROM A SET . 5-10

USING ARITHMETIC EXPRESSIONS . 5-11

The ADDCURVES Command . 5-11

The MXYPLOT Command . 5-13

6. INDEXING RELATIONAL ENTITIES

THE INDEX CONCEPT . 6-1

CREATING THE INDEX . 6-1

IMPROVING QUERY PERFORMANCE . 6-3

INDEX PERFORMANCE . 6-4

INDEX OVERHEAD . 6-6

PURGING AN INDEX . 6-6

eShell User’s Manual

TABLE OF CONTENTS iii

7. RETRIEVING DATA FROM NON-RELATIONAL ENTITIES

MATRIX ENTITIES . 7-1

The MATRIX Select Command . 7-1

Qualifying the Columns or Rows . 7-4

FREEFORM ENTITIES . 7-5

The FREEFORM Select Command . 7-5

Qualifying the Records . 7-6

STREAM ENTITIES . 7-7

8. INSERTING DATA INTO ENTITIES

ADDING NEW ENTRIES TO RELATIONS . 8-1

ADDING NEW COLUMNS OR ROWS TO MATRICES . 8-3

ADDING NEW RECORDS TO FREEFORM ENTITIES . 8-4

ADDING DATA VALUES TO STREAM ENTITIES . 8-5

9. UPDATING ENTITY DATA

UPDATING RELATIONAL ENTITIES . 9-1

UPDATING MATRIX ENTITIES . 9-3

RESTRICTIONS ON MATRIX UPDATING . 9-4

UPDATING FREEFORM ENTITIES . 9-4

UPDATING STREAM DATA . 9-5

CHANGING THE SCHEMA OF A RELATION . 9-6

10. REMOVING DATA FROM eBase

REMOVING AN ENTITY . 10-1

REMOVING ENTRIES FROM RELATIONS . 10-2

REMOVING COLUMNS OR ROWS FROM MATRICES 10-3

REMOVING RECORDS FROM FREEFORM ENTITIES 10-4

11. FILE ENVIRONMENT COMMANDS

THE SCRIPT FILE . 11-1

THE ARCHIVE FILE . 11-2

THE REPORT FILE . 11-3

THE INTERFACE FILE . 11-3

EXPORTING AND IMPORTING DATABASES . 11-4

12. REPORT GENERATION

FORMATTING COMMANDS . 12-1

COLUMN LABELS AND FORMATS . 12-1

PAGE TITLES . 12-4

GROUPING COMMANDS . 12-5

PAGE CONTROL COMMANDS . 12-5

User’s Manual eShell

iv TABLE OF CONTENTS

13. UTILITY FUNCTIONS

DIRECTORY TREE . 13-1

TOLERANCE FOR FLOATING POINT COMPARISONS 13-2

ONLINE HELP . 13-2

ENVIRONMENT SETTINGS . 13-3

 A. eQL COMMAND SUMMARY . A-1

Chapter 1 - Using eShell . 1-2

Chapter 2 - Creating and Maintaining Directories . 1-3

Chapter 3 - Creating Database Entities . 1-4

Chapter 4 - Retrieving Data from RELATIONs . 1-5

Chapter 5 - Graphing Retrieved Data . 1-6

Chapter 6 - Indexing Relational Entities . 1-7

Chapter 7 - Retrieving Data from Non-Relational Entities 1-8

Chapter 8 - Inserting Data into Entities . 1-9

Chapter 9 - Updating Data . 1-9

Chapter 10 - Removing Data from eBase . 1-10

Chapter 11 - File Environment Commands . 1-10

Chapter 12 - Report Generation . 1-11

Chapter 13 - Utility Functions . 1-13

B. GLOSSARY . B-1

INDEX . Index -1

eShell User’s Manual

TABLE OF CONTENTS v

This page is intentionally blank.

User’s Manual eShell

vi TABLE OF CONTENTS

1. INTRODUCTION

The Engineering Database Management System (eBase) developed by
Universal Analytics, Inc. (UAI) provides an advanced data management
facility for scientific software applications development. The design of
the database allows its effective use in structuring and managing any
large collection of engineering data. The Interactive eBase Shell (eShell) is
a separate computer program that allows the design engineer to access,
modify, and manage the information in an eBase database interactively.
eShell accomplishes this by providing the user with a powerful query
language called eQL (eBase Query Language). The eQL language ad-
heres to the ANSI Standard for Database Language - SQL X3.135-1986 as
much as practical. This standard, which addresses relational databases,
has been extended to accommodate the more powerful features of eBase.

THE eBase SOFTWARE SUITE

The suite of eBase products includes:

❐ The eBase Shell (eShell) and Interactive Query Language (eQL)

❐ eBase:applib, the Application Development Library

❐ eBase:matlib, the Matrix Utility Library

There are three manuals which document these products:

❐ This document, the eShell User’s Manual (Publication EB-001)

❐ eBase:applib User’s Manual (Publication EB-003)

❐ eBase:matlib User’s Manual (Publication EB-004)

A fourth manual, called The Installation Guide and System Support
Manual (various part numbers) provides information describing the

eShell User’s Manual

INTRODUCTION 1-1

host-computer dependent characteristics of all of the UAI software prod-
ucts. eBase:applib is a run-time library of Fortran subroutines which is an
advanced database tool for use in cost-effective scientific software devel-
opment. eBase:matlib is a similar library of high performance matrix
utility subroutines which have been optimized for many different com-
puters. This library includes routines for matrix algebra, linear equation
solving, eigenvalue extraction and others.

DATA MODELING

The high-level management of engineering data is closely related to the
management and performance of the actual product development proc-
ess. Data is created and used within limited, well-defined domains. These
include such areas as CAD Modeling, Structural Analysis, Shock and
Vibration, Master Dimensions, Loads Analysis, Propulsion Systems, Per-
formance Requirements, and many more. Typically, data is named and
structured in ways which relate to the specific domain. When an engi-
neering task has been successfully completed, the data is released by the
responsible engineering management. This overall process represents a
natural hierarchy that results from the decomposition of a complex proc-
ess into its simpler components. Determining the most useful and effi-
cient method for organizing this information can be called Data
Modeling. eBase provides powerful tools for data modeling. These tools
are summarized in this Chapter.

eBase ORGANIZATION

An eBase database is a collection of Entities. An Entity can be viewed as
an object with three components as shown in Figure 1-1. The Entity has a
Name Component which is used to identify it, a Schema which is a set of
rules that describes the data contents of the Entity, and it has Data Com-
ponent which is the actual data itself. There is also a Link Component
from the schema to the Data Component. eBase is a Multischematic Da-
tabase. This means there are different kinds of schemas. Entities which
share the same type of schema are grouped into Entity Classes. The

eBase Entity classes are described in more detail
later in this Chapter. Although the Entities contain
the actual data that is being managed, eBase sup-
ports a hierarchical organization which allows you
to specify the levels of data which are compatible
with your way of doing business. Beyond this, eBase
provides an Entity Subscript which allows storage of
different revisions of the same data classes.

NAME SCHEMA

DATA
COMPONENT

Link

Figure 1-1. Entity Components

User’s Manual eShell

1-2 INTRODUCTION

DIRECTORY HIERARCHY

Figure 1-2 illustrates a typical way in which an eBase hierarchy may be
defined. The eBase, A: in the figure, contains three Directories. A direc-

tory might contain the engineering data for a specific
product line, or it might contain a subset of such
data for a large and complex product. Each directory
may, in turn, be composed of one or more Subdirec-
tories containing related data. Each directory or sub-
directory may contain different data Entities. These
Entities may be organized in as many additional lev-
els of directories as needed to fully categorize the
data. In Figure 1-2, the white boxes represent direc-
tory hierarchy levels, while the shaded boxes repre-
sent actual data stored in the database.

This organization is best illustrated by an example
illustrated in Figure 1-3. Suppose there is a corporate
product called JET. An eBase database will be used
as a repository for all of the engineering activities
that will be performed for this product. The data for
JET has been partitioned into three subdirectories,
DESIGN, ANALYSIS, and TEST. The ANALYSIS sub-
directory has also been divided into three directo-

ries: one for aerodynamic analyses, AERO; one for finite element analyses,
FEA; and one for propulsion analyses, PROP.

The FEA directory has also been partitioned into three subdirectories. The
first, GEOMETRY, contains two Entities which define finite element model-

/DESIGN /ANALYSIS /TEST

MATERIALSLOADS

JET:

NODES

/AERO /FEA /PROP

BOUNDSELEMENTS

/PHYSICAL/SOLVE/GEOMETRY

Figure 1-3. Typical Data Organization

/A /B /C

E2

E3 E4

A:

E1

Figure 1-2. eBASE Directory Hierarchy

eShell User’s Manual

INTRODUCTION 1-3

ing data. These are called NODES, which contains grid point coordinate
data, and ELEMENTS, which contains data defining the finite elements in
the model.

In addition to the geometric data, there are other physical data, stored in
subdirectory PHYSICAL, for the finite element model such as material
properties, MATERIALS, and the boundary conditions imposed on the
model, BOUNDS. Finally, there is data required for the solution of the
analysis, such as environmental loads, LOADS which are stored in
SOLVE.

Note that there may be many other uses and interpretations of these
levels which are limited only by your imagination.

SUBSCRIPTED ENTITIES

Each directory or subdirectory may contain one or more actual database
Entities. These are, naturally, defined by their name. However, eBase
allows another flexibility in that you may have several Entities which
have the same basic name, but a different subscript number. This is use-
ful if you have, for example, several sets of analysis results that you are
going to correlate. There may be several Entities named RESULTS, with
different indices, that contain answers for different problem conditions.

The concept of subscripts is very powerful. You can, for example, imple-
ment the version concept found on some computers by simply incre-
menting your subscript each time you change the data in an Entity. Or,
you can simply create whole arrays of database Entities directly with their
subscripts. This provides you with the capability to do anything that you
like to better organize, access, and manipulate your data.

THE MULTISCHEMATIC MODEL: ENTITY CLASSES

As introduced earlier, eBase is a collection of data which is organized
into Entities. An Entity is simply a group of related data that is stored
together. Unlike purely relational databases which store tables of data,
eBase has four different data structures which are treated in a unified
manner. This type of database is called Multischematic. The four eBase
Entity classes are:

❐ Relational Entities

❐ Matrix Entities

❐ Freeform Entities

❐ Stream Entities

Each of these Entity classes is briefly described in the following sections.

User’s Manual eShell

1-4 INTRODUCTION

Relational Entities

You may view a Relation as simply a table of data. eBase tables have
rows, which are called Entries, and columns, which are called Attributes.

A particular data value at a given entry and at-
tribute location is called a Field. Figure 1-4 illus-
trates a typical Relation. The attributes of the Re-
lation are called ATT1, ATT2, ATT3, and ATT4.
Note that there are four entries for which this
data has been defined. These attributes, taken to-
gether with the characteristics of the data which
they contain, form the Schema of the Relation.
The attribute characteristics, or Schema Compo-
nents, of a Relation are defined when it is cre-
ated. These characteristics include the attribute
name, data type and, in some cases, length, are
described in detail in Chapter 3.

Matrix Entities

Matrices form the second Entity class in an eBase database. Matrices are
arrays of numbers used in mathematical formulae typically encountered
in engineering and physical science software applications. A Matrix En-
tity is defined in the standard mathematical manner as an array of n
Rows and m Columns:











a11
a12
…
an1

a12
a22
…
an2

…
…
…
…

a1m
a2m
…

anm











Each value aij in the Matrix is called a Term. The subscripts i and j indi-
cate the row and column location of the term. Matrices also have schema
components. These include the Orientation, the Storage Mode, the Nu-

meric types of their terms, and their general
topological Shape. As with Relations, the
schema is defined when the Matrix is created. A
Matrix which is entered by columns has a Col-
umn-major orientation and one which is entered
by rows has a Row-major orientation. The
Shape of a Matrix represents its general topol-
ogy such as square or rectangular. The Numeric
type of a Matrix specifies the type of data defin-
ing its terms. For example, the terms can be real
or complex. Finally, you may select from two
possible Storage Modes for the Matrix. The first
mode is Uncompressed in which case all of the
Matrix terms are stored on the database. To im-
prove efficiency, eBase uses an optional tech-
nique to minimize the disk storage requirements
of matrices by storing them in the Compressed
mode. Unlike the Uncompressed Matrix, only the

ATTRIBUTES

ATT1 ATT2 ATT3 ATT4

ENTRY 1 ➜ 101 0.0 0.0 0.0

ENTRY 2 ➜ 102 1.0 0.0 0.0

…… 103 1.0 1.0 0.0

ENTRY n ➜ 104 0.0 1.0 0.0

FIELD

Figure 1-4. RELATIONal Entity

UNCOMPRESSED MODE

COLUMN 1 ➜ 1.0 3.1 0.0 0.0 0.0

COLUMN 2 ➜ 0.0 5.5 0.0 2.0 0.0

COLUMN 3 ➜ 0.0 1.0 3.5 2.2 0.0

COLUMN 4 ➜ 0.0 0.0 1.5 2.3 4.0

COMPRESSED MODE

COLUMN 1 ➜ ❶ 1.0 ❷ 3.1

COLUMN 2 ➜ ❷ 5.5 ❹ 2.0

COLUMN 3 ➜ ❷ 1.0 ❸ 3.5 ❹ 2.2

COLUMN 4 ➜ ❸ 1.5 ❹ 2.3 ❺ 4.0

Figure 1-5. MATRIX Entity

eShell User’s Manual

INTRODUCTION 1-5

non-zero terms of Compressed matrices are stored along with a small
amount of control information. Consider the Matrix:













1.0
3.1
0.0
0.0
0.0

0.0
5.5
0.0
2.0
0.0

0.0
1.0
3.5
2.2
0.0

0.0
0.0
1.5
2.3
4.0













Figure 1-5 illustrates how this data would appear in a Column-major
Orientation for both the Compressed and Uncompressed Modes.

Freeform Entities

Freeform Entities are a form of internal data representation that can
sometimes be used to improve the performance of software applications.

They are collections of data with only a local
and transient purpose. Most often, they are
used in a software application that has been de-
veloped with the eBase:applib. You may think
of Freeform Entities as Fortran random files
which have variable length Records, as shown
in Figure 1-6. Freeform Entities are defined with
a single Schema Component that defines the re-
cords to be comprised either of a homogeneous
data type or of mixed heterogeneous data types.
The former, called Schematic Freeform Entities,
may be viewed in eShell, as described in Chap-
ter 7, and they may be exported and imported
as described in Chapter 11. Neither is true for
the mixed type. Because of these limitations, the

use of non-schematic Freeform entities is discouraged for other than tem-
porary data.

Stream Entities

A Stream Entity, shown in Figure 1-7, is a continuous Stream of Data
Values, each of which has a Position within the Entity. Each Data Value
may be directly and randomly addressed by reference to its Position. You
may best think of this type of Entity as a low-level Unix file structure. A

Stream Entity also has a very simple schema
with a single Schema Component — it may con-
tain mixed data types, in which case the limita-
tions described for non-schematic Freeform Enti-
ties also apply, or it may contain a single
numeric data type, or Schematic Stream, in
which case it has good portability characteristics.
The length of a Stream Entity is determined by
the last Position into which you insert data.

Value 1 … … Value 47 … … Value 93

Figure 1-7. STREAM Entity

RECORD 1 ➜ Value 1 … … Value 53

RECORD 2 ➜ Value 1 … … Value 10

RECORD 3 ➜ Value 1

RECORD 4 ➜ Value 1 … … Value 1002

RECORD 5 ➜ Value 1 Value 2

Figure 1-6. FREEFORM Entity

User’s Manual eShell

1-6 INTRODUCTION

SYNTAX OF COMMANDS

Later Chapters of this manual present the precise syntax of the various
eQL commands. This section introduces the nomenclature used in the
command descriptions.

What is a Command?

A command is a sequence of Command Parts which ends with a termina-
tor symbol. There are different kinds of Command Parts including Key-
words, Metasymbols, and other special symbols which will help you
understand eQL. The eQL termination symbol is the semicolon (;). Other
Command Parts are discussed in the following sections.

Keywords

A Keyword is a Command Part which you must enter exactly as shown
in this manual. Keywords appear in BOLDFACE typewritten style.

Abbreviating Keywords

For convenience, you may abbreviate many of the eQL Keywords. This is
indicated in the manual by underlining the required part of the Key-
word, as:

SELECT

Simple Metasymbols

A Metasymbol is a special Command Part that indicates you must enter a
requested data value. These symbols are shown in italics . A precise
definition of each Metasymbol appears at the time it is introduced in the
manual. For example, a command that you will learn later shows both
Keywords and a Metasymbol:

SET SCRIPT TO file_name ;

Optional Command Parts

An optional Command Part, whether a Keyword or a Metasymbol, is
indicated by enclosure in square brackets ([]). For example:

COMMAND_NAME user_list [KEYWORD]

indicates that the Keyword KEYWORD in the command is optional.

eShell User’s Manual

INTRODUCTION 1-7

Command Part Selectors

A Selector defines a group of Command Parts, one or more of which
must be selected. Selectors are enclosed in curley braces ({}):

justification ⇒




LEFT
CENTER
RIGHT





Naturally, Selectors may also be optional in which case they are enclosed
in brackets.

Metasymbol Suffixes

Many commands allow lists of user input. In these cases, the command
description uses the suffix:

_list

to indicate this. Each term in the list is suffixed with:

_term

Unless otherwise specified, the terms in a list are separated by commas:

user_list ⇒ user_term [, user_term [, ...]]

Throughout the manual you will find commands which include list Me-
tasymbols. If the list has the form shown above, then only the terms will
be defined.

Complex Metasymbols

For a complex command, there may be one or more Command Parts
which are themselves composed of many Command Parts. In such cases,
each complex Command Part is discussed separately and the relationship
of the Command Part to the whole command is shown in the left margin
while the exact definition appears in the body of the text adjacent to it.

SELECT attr_name_list
FROM rel_name_list

[WHERE_clause]
WHERE_clause ⇒ … …

Note that the Metasymbol is highlighed in boldface italics.

User’s Manual eShell

1-8 INTRODUCTION

Important Information

Two other conventions are used to assist your learning of eShell. These
are callouts which provide important information or give you reminders
useful when performing the tutorial examples.

☞ This is important information!!

✔ This is a reminder!!

NAMING eBase OBJECTS

Many objects within the eBase database are given names. These include
directories, Entities, views, Relational attributes, and symbols. Addition-
ally, there are special rules for Entity names and host-computer files.
These are described in the following sections.

Basic Naming Rules

A Basic Name must be no longer than 32 characters. It must begin with a
letter (A-Z) and the remaining characters may be letters (A-Z), digits
(0-9), or the special symbols underscore (_), and dollar ($).

Path Naming Rules

A Path defines a database and a directory hierarchy. The general form of
a path is:

path ⇒ [database_name :] [/] [dir_name_lis t]

where the database_name is the logical name of an open eBase data-
base and the dir_name_list is a series of one or more dir_name s
separated by slashes:

dir_name_list ⇒ dir_name [/ dir_name [/ ...]]

where each dir_name is a directory name.

eShell User’s Manual

INTRODUCTION 1-9

Entity Naming Rules

An eBase Entity is described by an optional Path, a Basic Name, and an
optional subscript list:

ent_name ⇒ [path] basic_name [subscript]

The optional subscript , which is enclosed in square brackets ([]), has
the form:

subscript ⇒ [sub_list]

Each sub_term is an integer value. The number of sub_term s must
match the number specified when the first subscripted version of
ent_name was created.

VALID ENTITY NAMES ILLEGAL ENTITY NAMES

ELEMDATA COORD@X (Illegal character)

Grid_Coordinates 1LOAD (Starts with number)

KAA[1,101] KAA[2] (Wrong number of subscripts)

Displacement[6] MAT[A] (Subscript not integer)

File Naming Conventions

There are a number of host computer files that may be used during your
eShell session. These include the actual database name, eQL Command
Files, Archive Files, Report Files, and Interface Files. File names which do
not satisfy the Basic Naming Rules described above must be enclosed in
tics, the actual format of the name used depends on your eShell host
computer and is described in the System Interface Manual.

User’s Manual eShell

1-10 INTRODUCTION

USING THE eShell PROGRAM

This section provides you with instructions for using eShell, selecting
eBase databases, and entering commands. Generally, eShell is Case-in-
sensitive; upper and lower case letters may be used interchangeably.
When names or command parameters contain embedded blanks or other
special characters, they must be enclosed in single quotation marks,
sometimes called tics, as in ’HI THERE’ . Also note that when enclosed
in tics, letters are case sensitive.

Getting Started

Usually, eShell is installed on the host computer as a system procedure.
You must check with your computer system manager to determine if
your system has been installed differently. To execute the program from
the command line, you enter:

eshell [-ps prefname] [-pu prefname]
 [-pl prefname] [database]

where:

prefname Specifies the substitution string used to generate Preference File names.
You may specify a different string for the System (-ps), the User (-pu)
and the Local (-pl) preference files. If you have the unusual case
where all of these files have the same name, you may use the option -
p followed by the prefname .

database Is the name of a database to be opened with read access.

This places you in the command mode. Unless directed otherwise by
eShell commands, all subsequent output will be sent to the terminal de-
vice. The optional prefname information is an advanced feature used
for customizing eShell which is described in the Installation Guide and
System Support Manual.

Online HELP

eShell provides an online HELP feature to provide documentation of the
features available in the program. The command used is:

HELP [command_part_list] ;

If HELP is specified without any additional parameters, a listing of avail-
able command_parts is given. You may then obtain additional informa-
tion by picking from a menu. If the command_part_list is provided,
then information relating to the named command_parts is presented
without menu interaction.

Additionally, you may use the uaidoc utility to view this manual online
using the Adobe® Acrobat® Reader 3.0 which is delivered with your
software. To do this, you launch the Reader in a new window.

eShell User’s Manual

INTRODUCTION 1-11

Accessing Databases

The first command used selects an eBase database that you wish to open
for access. This is done with the command:

OPEN database_name [= ’ phys_name ’]











NEW
TEMP

WITH




READ
WRITE
ADMIN














 [’ params ’] ;

The database_name specifies the name of an existing eBase database or
a database that you are creating during your current session. The op-
tional phys_name overrides the name of the database as viewed by the
operating system. On operating systems which use the file name to iden-
tify the location of the files, this also gives you the ability to override the
configuration parameters which would otherwise control the location of
the database files. For nonexisting databases, you may specify a status of
NEW or TEMPorary when you open it. Temporary databases do not have
any password protection since they are deleted at the end of your eShell
session. For a new database, you will be prompted for an ADMINISTRA-
TION password. This password will also be used for READ and WRITE
access. You may change any of the passwords with the SET PASSWORDS
command described later in this Chapter.

For existing databases, you are prompted for the appropriate access
password for the database. Some host-computers require additional info-
ration which is specified as optional params ; see the Installation Guide
and System Support Manual for a discussion of these.

The initial part of the eShell session is shown in the following example.

Example 1-1. Execute the eShell program for an eBase named MY_EB.

eshell
.... eShell Version 20.0 dd-mmm-yy 14:22
.... Copyright (c) 1992-1997, Universal Analytics, Inc.
.... All rights reserved
eSh> OPEN MY_EB WITH ADMIN;
eSh> Enter ADMINISTRATION Password: MAGIC
.... eBase "MY_EB" Open with "ADMINISTRATION" Privilege




 Your eQL Commands

eSh> END;
.... eShell Ended at 09:30 dd-mmm-yy
.... Elapsed Time 00:16:21 CPU Time 00:02:21

Note that the password is not a security measure for entering the eShell
program, but the password under which eBase databases will be ac-
cessed. eShell then verifies that the password allows the access you have
requested.

You may use two or more eBase databases simultaneously. Each data-
base may be opened with any privilege level. The sequences of events
shown in Example 1-1 occurs each time you open a database as shown in
the following example.

User’s Manual eShell

1-12 INTRODUCTION

Example 1-2. Execute the eShell program for two eBases.

eshell
.... eShell Version 20.0 dd-mm-yy 14:22
.... Copyright (c) 1992-1997, Universal Analytics, Inc.
.... All rights reserved
eSh> OPEN FOO WITH ADMIN;
eSh> Enter "ADMINISTRATION" Password: MAGIC
.... eBase "FOO" Open with "ADMINISTRATION" Privilege
eSh> OPEN BAR WITH READ;
eSh> ENTER "READ" PASSWORD: SCRT
.... eBase "BAR" Open with "READ" Privilege

All of the operations described in the remainder of this manual may now
be performed. You may terminate work on a given database by simply
entering the command:

CLOSE database_name [DELETE] ;

The DELETE option will delete all of the database physical files from your
host-computer. To use this option, you must have opened the database
with the ADMINISTRATION privilege. When you end your eShell ses-
sion, all open databases are automatically closed. It is not necessary to
explicitly close each one.

eQL Command Entry

Because the eQL language allows you to perform complex operations on
the database, it is possible for commands to get rather long. To support
long commands and to allow their entry in a readable and structured
manner, eQL allows commands to be entered on multiple lines. When
this is done, eQL provides line numbers for the command as it is being
entered. This is illustrated in the following example.

Example 1-3. Entering an eQL command on multiple lines.

eSh> SELECT * FROM GRID
 2> WHERE X > 3.0
 3> AND Y < 2.0;

Note that the command must end with a semicolon (;). Each command
line continuation is numbered, beginning with 2. The line entered at the
prompt is called line 1. eShell performs no action until the complete
command, including the semicolon, has been entered. This command is
referred to as the Active Command. After it is entered, the active com-
mand is saved until you enter the next active command. This allows you
to modify a command in the event it contains an error, or, in order to
create a new command that is similar to it. You may list the active com-
mand using:

LIST [line_1 [TO line_n]] ;

where line_1 represents the first line number to be listed and line_n ,
the last. If no line numbers are given, the entire active command is listed,

eShell User’s Manual

INTRODUCTION 1-13

and if only line_1 is given the single line is listed. The active command
is positioned to the single line most recently LIST ed. This position is
called the Current Position. You may delete lines in an analogous man-
ner:

DELETE [line_1 [TO line_n]] ;

However, when the DELETE has no optional line number specified, only
the line at the current position is deleted. A new line may be added to the
active command with:

ENTER ’ new_line ’;

where the new_line is inserted immediately after the current position.
Note that if the quotation mark is part of new_line , it is represented as
two consecutive quotation marks. You may also edit part of the line at
the current position. To move to the portion of the active command that
you will change, you use the LIST command. The change is then made
with the command:

CHANGE #string_1 #string_2 # ;

where the first occurrence of string_1 is replaced by string_2 . Al-
though the sharp (#) character is shown in the command, nearly any
delimiter may be used as long as it does not appear in either target string.
Exceptions are (| , \ , ~, " , ’ , { , and }).Note that embedded blanks are
significant and they may appear between the delimiters.

Example 1-4. List the previous command and change Y to Z.

eSh> LIST 1 TO 3;
 1 SELECT * FROM GRID
 2 WHERE X > 3.0
 3* AND Y < 2.0;
eSh> CHANGE /Y/Z/;
 3* AND Z < 2.0;

Notice that an asterisk (*) marks the current position within the active
command. You execute the active command by entering:

RUN;

The RUN command is typically invoked after modifying or correcting the
previous command. One last feature of command entry is the blank, or
null, line entry. If you discover that your command is in error prior to
entering the semicolon, you may enter a blank line at the prompt. This
closes command input activity and allows you to edit the command im-
mediately.

At the end of a session, you enter the eQL command:

User’s Manual eShell

1-14 INTRODUCTION

END;

This command closes all the active databases, provides a summary of
computer resources that were used during the session, and returns to the
operating system of the host computer.

Symbol Substitutions

You may at any time during your eShell session define symbols which
may be used in subsequent commands. Symbols are defined using the
command:

DEFINE [symbol_name [= value]] ;

The symbol_name must contain 32 or fewer characters and begin with a
letter. The value is used to set the symbol. It is always treated as a
simple character string which will be substituted for appearances of the
symbol. To use a symbol, you use the substitution notation illustrated in
the previous section:

&symbol_name

If a symbol that you reference has not been defined, you will be
prompted for it when you invoke a command. Both cases are illustrated
by the next example.

Example 1-5. Define the symbol X and use the symbols X and Y to per-
form the query shown:

eSh> DEFINE X = 3.0;
eSh> SELECT * FROM GRID
 2 WHERE X > &X
 3* AND Y < &Y;
eSh> ENTER VALUE FOR SYMBOL "Y": 2.0

Once a symbol is defined either explicitly or through a prompt, it retains
its value until you remove the symbol using the command:

UNDEFINE




 symbol _name
 ∗




 ;

The asterisk (*) may be used to UNDEFINE all previous definitions. Sev-
eral other conventions may be used for symbol definition. If you want a
symbol to be concatenated with additional characters, then you follow
the substitution with a period and the additional characters.

For instance,

eSh> DEFINE FOO = XYZ;
eSh> SEL * FROM &FOO.01;

results in:

eShell User’s Manual

INTRODUCTION 1-15

eSh> SEL * FROM XYZ01;

Finally, if it is necessary to include a period in the string immediately
following a symbol, then you must specify two periods:

eSh> DEFINE BAR = ABC;
eSh> SEL &BAR..GID FROM &BAR;

results in:

eSh> SEL ABC.GID FROM ABC;

If you enter the DEFINE command without an argument, all currently
defined symbols will be listed, and if you enter DEFINE with just a sym-
bol name, then the value of that symbol will be shown.

DATABASE PROTECTION

eBase databases have three levels of Passwords which can be used to
secure the data against inadvertent destruction or unauthorized use.
These passwords allow READ, WRITE, and ADMINISTRATION privi-
leges. Because the principal intent of eBase is the development of soft-
ware applications, it has not been designed to have the comprehensive
security protections often found in the financially oriented products.

The READ privilege allows a user to read all of the Entities on the data-
base and to perform any operation which does not create, modify or
delete information from it. The WRITE privilege extends access to allow
Entities to be modified and deleted from the database. Finally, the AD-
MINISTRATION privilege allows all possible database operations. The
command which allows you to change your eBase passwords during an
eShell session is:

SET PASSWORDS [ON database_name] password_list> ;

where password_list is a list of one or more password_term s which
define new values for any or all of the passwords. These terms have the
form:

password_term ⇒

















 READ
 WRITE
 ADMIN




 password

 CLEAR




 READ
 WRITE
 ADMIN

















If you do not specify a database_name , then the passwords are
changed for the current database. You may only change the passwords if
you have the ADMINISTRATION privilege level for the database. The
CLEAR option may be used to remove any level of password protection.

User’s Manual eShell

1-16 INTRODUCTION

DATABASE INTEGRITY

Because the primary design goals of eBase are flexibility and perform-
ance in scientific software application, it does not provide extensive data
integrity features which result in the high overhead of many non-scien-
tific database products. It does, however, provide several levels of data
integrity. This is done through configuration parameters which force fre-
quent physical data transfers.

WORKING WITH MULTIPLE DATABASES

eShell allows you to use any number of eBase databases that you have
previously created or obtained from an external source. As you will see
in subsequent Chapters of this manual, you may define multiple data-
bases and address the entire directory structure of each.

MOVING DATABASES BETWEEN COMPUTERS

eShell allows you to move eBase databases from one computer to an-
other. Options are available to export a database in either character for-
mat or in binary format using the IEEE-754(1985) Binary Floating-Point
Arithmetic Standard. Such database files may then be transferred to other
computers and then imported into eShell. This may only be done success-
fully for completely schematic data which includes all Relational Entities,
all Matrix Entities, Schematic Freeform and Schematic Stream Entities.
Details of this procedure are given in Chapter 11 of this manual.

eShell LIMITATIONS

Many databases have severe size limitations and their query languages
long lists of Reserved Words, those which you cannot use for other pur-
poses. eShell and eBase have reduced such problematic limits dramati-
cally as described in the following sections.

Reserved Words

eQL has been designed to have as few restrictions as possible. While
there are no categorically reserved words in the language, there are some
which cannot be used in particular circumstances. Rather than enumerat-
ing these, it is best if you do not use the words shown below for names
that you use in your database.

BINARY INTER or INTERSECTION

DIFF or DIFFERENCE MAT or MATRIX

DISTINCT ORDER

FORMATTED SEL or SELECT

FREE or FREEFORM STR or STREAM

FROM UNION

GROUP WHERE

eShell User’s Manual

INTRODUCTION 1-17

Size Limitations

There are no practicable limitations on the size or composition of an
eBase database. All limitations are imposed by the architecture of the
host computer. The only quantifiable limitation is that any Command
Part which requires an integer value, such as as Matrix row or column
number, a Freeform record number, or a Stream Data Value, cannot ex-
ceed the largest representable integer on the host computer. The smallest
value for eShell computers is greater than two billion, i.e. 2x109.

USING THE TUTORIAL

This manual provides all of the information necessary to use eShell and
the eQL language. Command usage is liberally illustrated by examples
taken from a small sample database shown in Figure 1.8. This database
has been delivered with eShell and is intended to be used as a tutorial to
teach you the fundamentals of eShell. Contact your Administrator if you
wish to have your own copy of the tutorial database, called TESTEB:,
and a copy of the Command Files which contain the eQL commands
used in the manual. The following brief description of the Entities on the
database will provide you with a physical interpretation of the data.

There are four directories in the database. The first is /GEOM, the second
is /MODEL, the third is /RESULT, and the fourth is /PLOT . The Entities
themselves are:

❐ /GEOM/GRID is a Relational Entity that contains, for each grid point
in a finite element model, the identification number (GID), a coordi-
nate system identification number (CID), and the three spatial coor-
dinates (X,Y,Z) assumed to be in some common coordinate system.

❐ /GEOM/QUAD4 is a Relational Entity that contains finite element defi-
nitions for quadrilateral plate elements. This data includes the ele-
ment identification number (EID), the element property
identification number (PID) and the four grid point identification
numbers defining the element (G1,G2, G3,G4).

❐ /MODEL/PSHELL is a Relational Entity containing element property
data which is referenced by the PID in the QUAD4 Relation. It con-
tains the PID , a material property identification number (MID) and
the thickness (T) of each element referencing the property.

❐ /RESULT/Q4STR[1] and /RESULT/Q4STR[2] are Relational Enti-
ties containing three output stress values (SIGX,SIGY,TAUXY) repre-
senting Normal-X stress, Normal-Y stress and shear stress,
respectively, for each element (EID). The two subscripted Relations
represent the static solution to two distinct loading conditions.

❐ /RESULT/Q4S is a Relational Entity containing the same data as the
previous Relations using a different organization in which the load-
ing condition data is stored as a Relational attribute.

User’s Manual eShell

1-18 INTRODUCTION

☞
Note that these two different data forms simply illustrate different data
modeling methods; there is no need to have both forms to perform any
particular access. Only the retrieval performance is affected by the
modeling method.

❐ /RESULT/BIGREL is a Relational Entity containing a large number
of entries which depends on your host-computer. It is used in the
examples presented in Chapter 6.

❐ /MODEL/KGG is a Matrix Entity that represents the global stiffness
matrix of the finite element model. The Matrix has the Column-major
Orientation, Compressed Mode, Numeric Type real, double preci-
sion, RDP, and Symmetric Shape. The contents of this Matrix are:

100.0 200.0 0.0 0.0 0.0 0.0

200.0 300.0 400.0 0.0 0.0 0.0

0.0 400.0 500.0 600.0 0.0 0.0

0.0 0.0 600.0 700.0 800.0 0.0

0.0 0.0 0.0 800.0 900.0 1000.0

0.0 0.0 0.0 0.0 1000.0 1100.0

❐ /MODEL/TESTFREE is a Freeform Entity containing five Records of
varying length each of which is comprised of real, single precision,
RSP, data. The data are:

RECORD DATA LENGTH

1 1.0,2.0,...,10.0 10

2 2.0,4.0,...,40.0 20

3 3.0,6.0,...,90.0 30

4 4.0,8.0,...,160.0 40

5 5.0,10.0,...,250.0 50

❐ /MODEL/STRM is a Stream Entity of type integer, INT , containing
1000 Data Values which are equal to the Position within the Entity.

❐ The /PLOT directory includes a number of Relations that contain
larger amounts of data suitable for demonstrating the XYPLOT com-
mands presented in Chapter 5. You may use the DIR and DESCRIBE
commands to get information about these.

eShell User’s Manual

INTRODUCTION 1-19

RELATION /GEOM/GRID

GID CID X Y Z

1 0 0.0 1.0 0.0

2 0 1.0 1.0 0.0

3 0 2.0 1.0 0.0

4 0 3.0 1.0 0.0

5 0 4.0 1.0 0.0

6 0 0.0 0.0 0.0

7 0 1.0 0.0 0.0

8 0 2.0 0.0 0.0

9 0 3.0 0.0 0.0

10 0 4.0 0.0 0.0

RELATION /RESULT/Q4STR[1]

EID SIGX SIGY TAUXY

1 1.0+6 2.0+6 4.0+4

2 3.0+6 1.0+7 6.0+3

3 2.0+6 3.0+6 4.0+4

4 2.0+6 1.0+6 5.0+4

RELATION /RESULT/Q4S

EID CASE SIGX SIGY TAUXY

1 1 1.0+6 2.0+6 4.0+4

2 1 3.0+6 1.0+7 6.0+3

3 1 2.0+6 3.0+6 4.0+4

4 1 2.0+6 1.0+6 5.0+4

1 2 7.0+7 0.0 3.0+3

2 2 6.0+7 0.0 2.0+3

3 2 5.0+7 0.0 1.0+4

4 2 4.0+7 0.0 4.0+3

STREAM /MODEL/STRM

Numeric Type INT

Length 1000

RELATION /GEOM/QUAD4

EID PID G1 G2 G3 G4

1 1 1 2 7 6

2 2 2 3 8 7

3 1 3 4 9 8

4 2 4 5 10 9

RELATION /MODEL/PSHELL

PID MID T

1 101 0.1

2 201 0.5

3 301 0.3

RELATION /RESULT/Q4STR[2]

EID SIGX SIGY TAUXY

1 7.0+7 0.0 3.0+3

2 3.0+6 1.0+7 6.0+3

3 5.0+7 0.0 1.0+4

4 2.0+6 1.0+6 5.0+4

RELATION /RESULT/BIGREL

ATT1 ATT2 ATT3

See Text

MATRIX /MODEL/KGG

Orientation COLUMN MAJOR

Mode COMPRESSED

Numeric Type RDP

Shape SYMMETRIC

Number of Rows 6

Number of Columns 6

Density 0.44

FREEFORM /MODEL/TESTFREE

Numeric Type RSP

Number of Records 5

Longest Record 50

FOR DIRECTORY /PLOT
You Must Query the Database

Figure 1-8. Sample eBase Database TESTEB

User’s Manual eShell

1-20 INTRODUCTION

2. DIRECTORIES AND ENTITIES

As introduced in Chapter 1, an eBase database may be logically config-
ured using a hierarchical structure of Directories. This Chapter describes
the commands which you may use to manipulate and manage a direc-
tory structure and those used to describe the entities within the directory
structure.

REFERENCING DIRECTORIES IN COMMANDS

When you use a hierarchical set of directories within eShell, you must
indicate where a database entity may be found within the directory struc-
ture. This is done by specifying the Path to the entity.

If the Path name begins with a slash, then eShell searches for the entity
beginning at the root of the directory structure. Otherwise, eShell begins
at the current directory and searches downward.

For example, many eShell commands require that you enter one or more
entity names. Each entity name may be in one of three forms:

❐ It may be a fully qualified name. This means specifying the entire
directory Path, including the database descriptor:

DB2:/A/B/C/MYDATA

❐ It may be an Absolute Directory. In this case, the specified PATH is
used and only the database descriptor is obtained from the current
path default:

If DB2:/A/B is the default path,
Then /D/E/MYDATA refers to DB2:/D/E/MYDATA

❐ It may be a Relative Directory, in which case the specified PATH is
appended to the default:

eShell User’s Manual

DIRECTORIES AND ENTITIES 2-1

If DB2:/A/B is the default path,
Then C/MYDATA refers to DB2:/A/B/C/MYDATA

❐ A second form of relative directory allows you to follow the directory
chain upward by using a double dot (..) to move up one level in the
hierarchy:

If DB2:/A/B/C is the default path,

Then ../../X/MYDATA refers to DB2:/A/X/MYDATA

If you are in the Root Directory, the double dot has no effect.

CREATING DIRECTORIES

A newly created eBase database has a single directory, called the Root
Directory, which is denoted symbolically by a slash (/) character. You
may create a new directory using the command:

MKDIR path ;

where the path ends with the directory name which will be created.
Often, directories other than the root directory are called Subdirectories.

Example 2-1: Create the directory ANALYSIS and a subdirectory called
FEA on the TESTEB database.

eSh> MKDIR /ANALYSIS;
eSh> MKDIR /ANALYSIS/FEA;

THE WORKING DIRECTORY

When you open an eBase database, you are be placed in the Root Direc-
tory of the database that you OPEN. Your location is called the Working
Directory. Each time you open another database, your working directory
becomes the Root Directory of that database. To move to another direc-
tory, you use the command:

CD [path] ;

where path specifies the directory name to which you will move. If no
path is specified, then eShell identifies your current Working Directory.

Example 2-2: Move to the directory ANALYSIS/FEA .

eSh> CD ANALYSIS/FEA;
 or
eSh> CD ANALYSIS;
eSh> CD FEA;
eSh> CD;
.... Working Directory: TESTEB:/ANALYSIS/FEA

User’s Manual eShell

2-2 DIRECTORIES AND ENTITIES

REMOVING DIRECTORIES

You may remove an existing directory using the command:

RMDIR path ;

where the path ends with the directory name which will be removed.

Example 2-3: While in the Root Directory, remove the directories FEA
and ANALYSIS from the TESTEB database.

eSh> RMDIR ANALYSIS/FEA;
eSh> RMDIR ANALYSIS;

☞
Note that all entities must be PURGEd from the directory before it may be
removed. See Chapter 10.

LISTING DIRECTORIES

There is an eQL command available that is used to determine informa-
tion about the contents of a directory. There are two forms of the com-
mand to do this. The first is used for complete directories, and the second
is used for entities. These are described in the following sections.

Using a Path Specification

To obtain a directory listing for a selected directory, you use the com-
mand:

DIRECTORY [path]













ALL
REL____ATION
MAT____RIX
FREE_____FORM
STR____EAM
DIR____ECTORY













 


DATE
SUM____MARY




 ;

where path is a valid Path name. If the path is omitted, a listing of the
entities in the current Working Directory is printed as illustrated in the
example below.

Example 2-4: While in the root directory, print the directory listing for
the TESTEB database.

eSh> DIR;
.... Directory TESTEB:/
.... Name Class Size
.... ------ ----- ----------
.... GEOM DIR 2 Entities
.... MODEL DIR 3 Entities
.... RESULT DIR 3 Entities
.... Directory Contains 3 Subdirectories

eShell User’s Manual

DIRECTORIES AND ENTITIES 2-3

In this case, there are no entities in the root directory. However, a listing
of the subdirectories within a directory are shown along with a count of
the number of entities in each. The next example shows the results ob-
tained when a path is specified in the DIR command.

Example 2-5: List each directory on the TESTEB database.

eSh> DIR GEOM;
.... Directory TESTEB:/GEOM
.... Name Class Size
.... ----- ---- ----------
.... GRID REL 10 Entries
.... QUAD4 REL 4 Entries
.... Directory Contains 2 Entities
eSh> DIR RESULT;
.... Directory TESTEB:/RESULT
.... Name Class Size
.... ----- ----- -------------
.... Q4S REL 8 Entries
.... Q4STR REL* 1 Subscript
.... 2 Versions
.... RelVer: [2]
.... Directory Contains 2 Entities
eSh> DIR MODEL;
.... Directory TESTEB:/MODEL
.... Name Class Size
.... -------- ----- ------------
.... PSHELL REL 3 Entries
.... TESTFREE FRE 5 Records
.... STRM STR 1000 Values
.... KGG MAT 6 Columns
.... Directory Contains 3 Entities

The listing shows the name of each entity, its class, and a description.
Subscripted entities are indicated by an asterisk (*) which follows the
class. The description depends on the entity class:

❐ For Relations, it is the number of entries.

❐ For Matrix entities, it is the number or columns or rows depending
on the storage mode.

❐ For Stream entities, it is the number of Data Values, and

❐ For Freeform entities, it is the number of records.

For all classes of subscripted entities, it is the number of subscripts used,
the number of versions which exist, and the subscript of the Released
Version, if any. A discussion of Released Versions is found later in this
Chapter.

You may limit the directory listing by using one of the options shown in
the command. For example, to restrict the listing to a single entity class or
to the subdirectories within the directory, you use the corresponding
Keyword. The SUMMARY option simply lists the last line of the listing
which gives a count of the number of entities and subdirectories within
the directory. If you select the DATE option, which applies to the restric-
tion Keywords as well, the listing includes two dates, the date that each
entity was created and date when it was last modified.

User’s Manual eShell

2-4 DIRECTORIES AND ENTITIES

The Entity Directory

You may also request a directory listing by referencing a fully qualified
entity name. The DIR command form is then:

DIRECTORY ent_name [ALLVER] 


DATE
SUM____MARY




 ;

where ent_name is a fully qualified entity name. The options ALLVER
and SUMMARY are only used when ent_name has subscripted versions.
The following examples show the directory listing produced by this com-
mand.

Example 2-6: Request a directory listing for entity GRID:

eSh> DIR /GEOM/GRID;
.... Relation TESTEB:/GEOM/GRID
.... Name Size
.... ---- ----------
.... GRID 10 Entries

If ent_name has subscripted versions, and you enter only the Basic
Name of the entity, then you obtain the directory list for the Released
Version:

Example 2-7: Request a directory listing for the Released Version of en-
tity Q4STR:

eSh> DIR /RESULT/Q4STR;
.... Relation TESTEB:/RESULTS/Q4STR[2]
.... Name Size
.... -------- ---------
.... Q4STR[2] 4 Entries

By including the ALLVER option, you will obtain the directory for each of
the subscripted versions of the entity:

Example 2-8: Request a directory listing for all subscripted versions of
entity Q4STR:

eSh> DIR /RESULT/Q4STR ALLVER;
.... Relation TESTEB:/RESULT/Q4STR
.... Name Size
.... -------- ---------
.... Q4STR[1] 4 Entries
.... Q4STR[2] 4 Entries
.... There are 2 Subscripted Versions

The resulting description shows the existing subscripts and the entity
class. To then obtain the specific information about one of these, its sub-
script is explicitly included in the command.

eShell User’s Manual

DIRECTORIES AND ENTITIES 2-5

DESCRIBING DATABASE ENTITIES

To determine information about the entities on the eBase database, you
use the command:

DESCRIBE ent_name ;

where ent_name may be the fully qualified name of a database entity of
any class.

Example 2-9: From the root directory, move to the subdirectory MODEL
and request descriptions for Relation PSHELL, Matrix KGG,
Stream STRM, and Freeform FREE.

eSh> CD MODEL;
eSh> DESCRIBE PSHELL;
.... Relation TESTEB:/MODEL/PSHELL
.... Schema is:
.... Attribute Type Len Null Descriptor
.... --------- ---- ----- ---- ------------
.... PID INT 1 NO
.... MID INT 1 YES
.... T RSP 1 YES
.... Current Contents 3 Entries

The meaning of the attribute type, length (Len), Null specifier and the
Descriptor is presented in Chapter 3.

eSh> DES KGG;
.... Matrix TESTEB:/MODEL/KGG
.... Column Major, Compressed, Real, Double Precision, Symmetric
.... 6 Rows, 6 Columns, Density = 44.4%

The Matrix description includes information about the Orientation,
Storage Mode, the Numeric Type of the terms in the Matrix, the
Shape of the Matrix, and its size and density. The density is the ratio
of the number of stored terms to the total possible terms and it indi-
cates the amount of data compression that has been performed. A
more complete discussion of these descriptors appears in Chapter 3.

eSh> DESCRIBE TESTFREE;
.... Freeform TESTEB:/MODEL/TESTFREE
.... 5 Records, Longest Record is 50, Numeric Type INT
eSh> DESCRIBE STRM;
.... Stream TESTEB:/MODEL/STRM
.... 1000 Data Values, Numeric Type RSP

User’s Manual eShell

2-6 DIRECTORIES AND ENTITIES

For Freeform entities, the information reported includes the number of
records in the entity and the length of the longest record. Similarly, for
Stream entities, the Numeric Type and number of Data Values is re-
ported. As discussed in Chapter 1, no operations other than DESCRIBE
or PURGE may be performed on Freeform or Stream entities, unless they
are Schematic. To DESCRIBE subscripted entities, there are two options
as shown in the next two examples.

Example 2-10: Request a description for subscripted entity Q4STR[2] :

eSh> DESCRIBE /RESULT/Q4STR[2];
.... Relation TESTEB:/RESULT/Q4STR[2]
.... Schema is:
.... Attribute Type Len
.... --------- ---- -----
.... EID INT 1
.... SIGX RSP 1
.... SIGY RSP 1
.... TAUXY RSP 1
.... Current Contents 4 Entries

In this example, an explicit subscripted version was included as part of
the ent_name given. If an entity has subscripted versions and you do
not specify a version, then you will obtain a description of the Released
version of the entity. If there is no Released Version, then you will receive
a message to that effect.

RELATIONS WITH INDEXED ATTRIBUTES

When you DESCRIBE a Relation for which you have created one or more
indexes, the results are modified slightly:

Example 2-11: Request a description of Relation Q4S and suppose that
two indexes have been created for it, one on attribute EID
and one on the combined attributes EID and CASE:

eSh> DESCRIBE /RESULT/Q4S;
.... Relation TESTEB:/RESULT/Q4S
.... Schema is:
.... Attribute Type Len
.... --------- ---- -----
.... EID INT 1
.... CASE INT 1
.... SIGX RSP 1
.... SIGY RSP 1
.... TAUXY RSP 1
.... Current Contents 8 Entries
.... 2 Indexes Exist:
.... 1 on EID
.... 2 on EID and CASE

A complete discussion of indexing is found in Chapter 6 of this manual.

eShell User’s Manual

DIRECTORIES AND ENTITIES 2-7

RELEASING A SUBSCRIPTED VERSION

As shown in earlier sections of this Chapter, you may Release one of the
subscripted versions of a subscripted entity. This is done with the com-
mand:

RELEASE ent_name ;

The significance of a Released Version is that all eQL commands can now
use the Basic Name of the entity without reference to a subscript. Natu-
rally, if you have not Released a version, such commands will fail. The
Release a different version of the entity, you simply use the RELEASE
command and specify the new subscript. If you want to remove a re-
leased version without assigning a new one, then you use the command:

UNRELEASE ent_name ;

MANIPULATING ENTITIES

There are several operations that you may perform on entities, or groups
of entities, that may simplify data management. The first allows one
entity to be copied to another thereby replicating all of the physical data
associated with that entity including any Indexes it may have. This com-
mand is:

COPY entity_name_1 TO entity_name_2 [ALLVER] ;

where the ALLVER option allows all subscripted versions of the entity to
be copied at one time.

You may change the name of an entity, or all of its versions, with the
RENAME command:

RENAME entity_name_1 TO entity_name_2 [ALLVER] ;

It is sometimes useful to create a new name for an entity or all of its
versions. This is done with the ALIAS command:

ALIAS entity_name TO alias_name [ALLVER] ;

The ALIAS command may not be used across databases.

Finally, there are two commands which allow you to convert a Matrix
entity from one Storage Mode to another. This is done using:

COMPRESS mat_name_1 TO mat_name_2 [ALLVER] ;

UNCOMPRESS mat_name_1 TO mat_name_2 [ALLVER] ;

For all of these commands, you may specify the Basic Name of an entity
if you are operating on all Subscripted versions of it. Naturally, you may
also include a Subscript to explicitly select just one version.

User’s Manual eShell

2-8 DIRECTORIES AND ENTITIES

The ALIAS command does not make any physical copy of the data — it
simply defines new name, alias_name , and Link Components which
share the same data component as entity_name . This is illustrated in
Figures 2-1a and 2-1b. This results in several side effects. If you modify
the information in the data component of DATA, then these changes will
appear in the alias, MYDATA, as well. If you PURGE either entity, then the
name component will be removed from the database, but the data com-
ponent will remain and may be referenced by the alias_name , as
shown in Figure 2-1c.

/A

Data
Component

ALIAS DATA MYDATA PURGE DATA

DATA

/A

MYDATA

Data
Component

/A

DATA MYDATA

Data
Component

a. Initial State
of Database

b. Link Created by
ALIAS Command

c. Original Name Removed
but ALIAS Link Remains

Link

Link

Link Link

Figure 2-1. Effect of ALIAS Command

eShell User’s Manual

DIRECTORIES AND ENTITIES 2-9

This page is intentionally blank.

User’s Manual eShell

2-10 DIRECTORIES AND ENTITIES

3. CREATING eBase ENTITIES

In addition to using an eBase database created by a software application
that uses the eBase:applib tools, you may also create a new database or
add new entities to an existing one. This Chapter describes the com-
mands and techniques for performing these operations.

CREATING RELATIONS

A new Relation may be added to the eBase database and, as will be seen
in Chapter 8, data inserted into it. The command to do this is:

CREATE RELATION rel_name




 (schema_list)

LIKE old _rel




 ;

The rel_name is the entity name to be created and schema_list is a
list of one or more schema_term s. These terms specify the attributes
which define the Relation and their data characteristics. Each
schema_term in this list has the form:

CREATE RELATION rel_name




 (schema_list)

LIKE old _rel




 ;

schema_term ⇒ attrib_name attrib_type
[(attrib_len)] [NOT NULL]]
[’ descriptor ’]

The attrib_name must follow the valid naming rules. The attribute
types, attrib_type , that may be selected are shown in Table 3-1. The
attrib_len parameter is an integer that defines the length of the attrib-
ute. For numeric arrays, this is used only when the array has two or more
elements. It is also possible to specify the NOT NULL option for each

eShell User’s Manual

CREATING eBase ENTITIES 3-1

attribute. The meaning of NULL attributes is discussed later in this Chap-
ter. Finally, you may attach a descriptor to an attribute. A descrip-
tor is simply text which allows you to provide an amplified description
of the meaning of the attribute. It is necessary for you to have the AD-
MINISTRATION privilege in order to create a Relation. The Relation
may also use the schema previously defined for an existing Relation,
old_rel by using the LIKE clause.

The use of the CREATE RELATION command is quite simple as shown in
the next example.

Example 3-1. Create a new directory TUTOR, and in this directory create
a Relation Q4S2 with the same schema as the Relation
Q4STR[2] contained on the TESTEB: database.

eSh> MKDIR TUTOR;
eSh> CD TUTOR;
eSh> CREATE REL Q4S2
 2> (EID INT,
 3> SIGX RSP,
 4> SIGY RSP,
 5> TAUXY RSP);
 or
eSh> CREATE REL Q4S2 LIKE /RESULT/Q4STR[2];

✔
The /TUTOR/ Directory will be used for many of the examples in the
remainder of this manual.

attrib_type DESCRIPTION attrib_len

INT Integer Value Length of Array

RSP Real, Single Precision Value Length of Array

RDP Real, Double Precision Value Length of Array

CSP Complex, Single Precision Value Length of Array

CDP Complex, Double Precision Value Length of Array

CHAR Character String Number of Characters

Table 3.1: Relational Attribute Types

User’s Manual eShell

3-2 CREATING eBase ENTITIES

Attributes that are defined as arrays, those having attrib_len greater
than one, are intended to store data that is exclusively used on an all-or-
nothing basis. This might be the case, for instance, when storing transfor-
mation matrices.

Example 3-2. In subdirectory TUTOR, create a new Relation called
TRANS. Each entry contains an identification number, TID ,
and a small 3x3 Matrix called T. Assume that the Matrix
T will only be accessed in its entirety for computational
purposes and can thus be stored as an array of RSP values.
Also, add appropriate descriptors to the attributes.

eSh> CREATE RELATION TRANS
 2> (TID INT ’Transformation ID Number’,
 3> T RSP(9) ’Transformation Matrix’);

THE "NULL" FIELD CONCEPT

Many Relational databases include the concept of a NULL field within
an entry of a Relation. This feature is useful for entities which have
many attributes which can be logically grouped into subsets. A simple
example is the case in which an EMPLOYEE Relation contains many
attributes describing each employee. One attribute might be COMMIS-
SION_EARNED. Clearly, this applies only to sales people who qualify for
commission earnings. Therefore, this field is typically NULL for other
classes of employees.

An eBase Relation may contain NULL fields when only a subset of data
has been inserted into the entity, as described in Chapter 8. This occurs
when insertions are performed using a projection that does not include
all of the attributes of the Relation. There are certain eQL operations
that can internally create such fields. If you ever see the word NULL
appear in a display, it is because an operation has created such a field. It
is possible to update entries which contain a NULL field.

CREATING MATRICES

New matrices can also be created on the eBase database. This is done by
using the command:

CREATE MATRIX mat_name




 (mat_attrib)

LIKE old _mat




 ;

where the mat_name is the name of the Matrix entity. A Matrix is fur-
ther defined by its characteristics which include its Storage Mode, the
Numeric Type of the data that it contains, its general Shape, and its
Static Dimension. The Static Dimension specifies the maximum number
of Rows or Columns. This implicitly defines the Orientation of the entity.

eShell User’s Manual

CREATING eBase ENTITIES 3-3

These characteristics are specified with:

CREATE MATRIX mat_name




 (mat_attr _list)

LIKE old _mat




 ;

mat_attr _term ⇒













MODE mode_type
TYPE num_type
SHAPE shape





ROWS
COLUMNS




 number _of _rorc













Table 3-2 presents the available options for the Storage Mode,
mode_type and Numeric Type, num_type . The Matrix num_type s are
somewhat different from those of Relational entities. The num-
ber_of_rorc depends on the Storage Mode. The eBase Matrix storage
options allow one dimension of a Matrix to be fixed and the other
dimension to be dynamic. In the case of the Column-major Orienta-
tion, the number of columns is dynamic while the number of rows is
fixed. For Row-major matrices, the opposite is true — the number of
rows is dynamic and the number of columns static. As a result, if your
Matrix is stored in Column-major mode, then the number of ROWS is
entered; if it is in Row-major form, then the number of COLUMNS is en-
tered. In both cases, these are entered as an integer value. Note that the
ADMINISTRATION privilege is also required to create a Matrix and
that a LIKE clause may be specified to use the attributes of an existing
Matrix.

SYMBOL KEYWORD DESCRIPTION

mode_type
COMPRESS Compressed Storage Mode

UNCOMPRESS Uncompressed Storage Mode

num_type

INT Integer Terms

RSP Real, Single Precision Terms

RDP Real, Double Precision Terms

CSP Complex, Single Precision Terms

CDP Complex, Double Precision Terms

shape

RECTANGULAR Aij , i = 1,...,m; j=1,...,n

SQUARE Aij , i = 1,...,n; j=1,...,n

SYMMETRIC Aij = Aji , i = 1,...,n; j=1,...,n

DIAGONAL Aij = 0 when i ≠ j

IDENTITY Aii = 1.0, Aij = 0 when i ≠ j

Table 3.2: Matrix Attribute Types

User’s Manual eShell

3-4 CREATING eBase ENTITIES

Example 3-3. Create Matrix NEWKGG, in directory /TUTOR , with the
same characteristics as KGG on the TESTEB: database:

eSh> CD ../MODEL;
eSh> CREATE MATRIX NEWKGG
 2> (MODE COMPRESS,
 3> TYPE RDP,
 4> SHAPE SYMMETRIC,
 5> ROWS 6);
 or
eSh> CREATE MATRIX /MODEL/NEWKGG LIKE KGG;

CREATING FREEFORM ENTITIES

New Freeform entities may be created as long as they are Schematic.
Recall from Chapter 1 that this means they must have a homogeneous
data type. You create a Freeform with the command:

CREATE FREEFORMfree_name




 (TYPE num_type)

LIKE old _free _name




 ;

where the free_name is the entity name. Each Freeform entity has a
single characteristic, its Numeric Type, num_type . The allowable values
are shown in Table 3-3. Again, ADMINISTRATION privilege is required
to create these entities and the LIKE clause may be specified to use the
attributes of an existing entity.

Example 3-4. Create Freeform NEW_FREE, in directory /TUTOR, with the
same characteristics as FREE on the TESTEB: database:

eSh> CD TUTOR;
eSh> CREATE FREEFORM NEW_FREE
 2> (TYPE RDP);
 or
eSh> CREATE FREEFORM NEW_FREE LIKE /MODEL/FREE;

SYMBOL KEYWORD DESCRIPTION

num_type

INT Integer Terms

RSP Real, Single Precision Terms

RDP Real, Double Precision Terms

CSP Complex, Single Precision Terms

CDP Complex, Double Precision Terms

MIXED Heterogeneous Terms

Table 3.3: Freeform and Stream Numeric Data Types

eShell User’s Manual

CREATING eBase ENTITIES 3-5

CREATING STREAM ENTITIES

New Stream entities may be also be created as long as they are schematic.
They are created with the command:

CREATE STREAM stream_name




 (TYPE num_type)

LIKE old _stream _name




 ;

where the stream_name is the entity name. Again, the Stream has a
single characteristic, its Numeric Type, num_type also shown in Table
3-3. ADMINISTRATION privilege is required to create these entities and
the LIKE clause may be specified to use the attributes of an existing
entity.

CREATING SUBSCRIPTED ENTITIES

When you create a subscripted entity of any class, the first creation deter-
mines the Dimensionality, or number of subscripts, that will be used for
all subsequent subscripted versions of the entity that you create. An error
will occur if you attempt to specify an entity with the wrong Dimension-
ality in any eQL command.

✔
Clean-up your /TUTOR/ Directory to restore your TESTEB: database to
its initial state.

User’s Manual eShell

3-6 CREATING eBase ENTITIES

4. RETRIEVING DATA
FROM RELATIONS

The most powerful use of the eQL language is its ability to retrieve data
from an eBase database. This Chapter describes the commands used to
retrieve data from Relations. The results of such a retrieval are called
a Query, and the act of the retrieval is often referred to as Querying. The
flexibility and options available for retrieval of data are of a complex
nature. Therefore, this Chapter is organized in such a manner that suc-
cessively more advanced uses of the SELECT command are defined and
illustrated by many examples. It is best to read all of the material thor-
oughly and to work through the examples using the sample database.

THE SELECT COMMAND

Data retrieval is accomplished with the SELECT command. The general
form of this command is:

[RELATION] SELECT select_list FROM_part
[WHERE_part]
[GROUP_part]
[ORDER_part] ;

The select_list and FROM_part are required. The WHERE_part,
GROUP_part and ORDER_part are each optional, but when any or all of
them appear in the SELECT command they must appear in the order
indicated. The richness of this command requires numerous examples.
The examples which follow are presented in increasing levels of com-
plexity, starting with the simplest form of the command:

eShell User’s Manual

RETRIEVING DATA FROM RELATIONS 4-1

SELECT attrib_list FROM rel_name ;

where the attrib_list is a list of one or more attribute names, sepa-
rated by commas, that are contained in the Relation specified by
rel_name .

Example 4-1. Query all of the columns from Relation QUAD4.

eSh> CD /GEOM
eSh> SELECT EID,PID,G1,G2,G3,G4 FROM QUAD4;

 EID PID G1 G2 G3 G4
-------- -------- -------- -------- -------- --------
 1 1 1 2 7 6
 2 2 2 3 8 7
 3 1 3 4 9 8
 4 2 4 5 10 9

.... 4 Entries Selected

Note that there is a special shorthand that can be used when selecting all
the attributes:

SELECT * FROM GRID;

Any subset of attributes may be selected, and the resulting output pre-
sents the attributes in the order in which they are named on the SELECT
command.

Example 4-2. Select only the G1 and G4 attributes from Relation QUAD4,
first selecting G4.

eSh> SELECT G4,G1 FROM QUAD4;

 G4 G1
-------- --------
 6 1
 7 2
 8 3
 9 4

.... 4 Entries Selected

The SELECT command also allows you to only select entries from the
Relation which have distinct values for all SELECTed attributes. The
command is modified slightly as:

SELECT [DISTINCT] attrib_list
FROM rel_name ;

User’s Manual eShell

4-2 RETRIEVING DATA FROM RELATIONS

Example 4-3. Select the distinct property identification numbers from
Relation QUAD4.

eSh> SELECT DISTINCT PID FROM QUAD4;

 PID

 1
 2

.... 2 Entries Selected

THE OUTPUT FORMAT

Examples 4-1 and 4-2 illustrate the type of output that appears when a
query is performed. A description of the general format of this output
and the manner in which you may modify it are given in Chapter 12.

ATTRIBUTES WHICH ARE ARRAYS

If an attribute of a Relation is an array , i.e. its length is greater than
one, then all of the elements of the array are displayed when queried.
Although the sample database does not contain a Relation with such
attributes, consider the following example.

Example 4-4. Suppose that the Relation QUAD4 was created in a slightly
different manner to place the grid point identification
numbers (G1, G2, G3 and G4) in a single attribute called
GRIDS of data type INT and length 4. The following out-
put would result from the indicated query.

eSh> SELECT EID,PID,GRIDS FROM QUAD4;

 EID PID GRIDS(4)
-------- -------- --------------------------------------
 1 1 1 2 7 6
 2 2 2 3 8 7
 3 1 3 4 9 8
 4 2 4 5 10 9

.... 4 Entries Selected

☞
Individual elements within an array attribute cannot be referenced or
selected on an individual basis, nor can they be used in any
computational manner.

REFERENCING A PATH DURING THE QUERY

The rel_name specified in the FROM_part of a query may include a full
path name in addition to a simple entity name. Alternately, you may set a
default path prior to the query or you may define a global symbol that
are used in the name. These are shown in the following example.

eShell User’s Manual

RETRIEVING DATA FROM RELATIONS 4-3

Example 4-5. Suppose that the Relation QUAD4 resides in the directory
/BIGPLANE/WING . The following methods may be used
to query the Relation.

eSh> SELECT EID,PID,GRIDS FROM /BIGPLANE/WING/QUAD4;
 or
eSh> cd /bigplane/wing;
eSh> SELECT EID,PID,GRIDS FROM QUAD4;
 or
eSh> DEFINE PATH=’/bigplane/wing/’;
eSh> SELECT EID,PID,GRIDS FROM &PATH.QUAD4;

QUALIFYING THE SELECTION

In many cases, it is desired to select only those entries in a Relation that
satisfy a certain condition or combination of conditions. This is accom-
plished by using the following variation of the SELECT command:

SELECT attrib_names FROM rel_name
WHERE search_condition ;

where a search_condition is a logical_expression of arbitrary
complexity that involves any, or all, of the attributes in the Relation. The
terms in a logical_expression are themselves Relational_ex-
pression s. All of the rules for evaluating logical and Relational expres-
sions follow the standard rules of Fortran.

Example 4-6. Select those grid points from Relation GRID that have X
coordinates greater that 3.0 .

eSh> SET TOLERANCE TO 0.0;
eSh> SELECT * FROM GRID WHERE X > 3.0;

 GID CID X Y Z
-------- -------- ------------ ------------ ------------
 5 0 4.00000E+00 1.00000E+00 0.00000E+00
 10 0 4.00000E+00 0.00000E+00 0.00000E+00

.... 2 Entries Selected

Note that the SET TOLERANCE command is used to override your con-
figuration default value for this and subsequent examples.

☞
Note that when Relational operations are performed between floating
point values it is possible for the numeric representations to cause
testing failure. This is corrected by the use of a floating point
TOLERANCE on the operations, as described in Chapter 13.

Table 4-1 lists the allowable logical and Relational operators that may
be used in a search_expression . The next example illustrates the use
of a logical combination of two Relational terms.

User’s Manual eShell

4-4 RETRIEVING DATA FROM RELATIONS

Example 4-7. Select the grid point identification number, GID, for all
grid points with X-coordinates greater than 2.0 and Y-co-
ordinates equal to 0.0 .

eSh> SELECT GID FROM GRID WHERE X > 2.0 AND Y = 0.0;

 GID

 9
 10

.... 2 Entries Selected

Parentheses may be used to group and clarify more complex expressions
appearing in the search_condition .

Example 4-8. Select the grid point identification number, GID, and X-co-
ordinate for all grid points with X-coordinates greater than
2.0 and Y-coordinates equal to 0.0 , or whose GID is 1.

eSh> SELECT GID,X FROM GRID
 2> WHERE (X > 2.0 AND Y = 0.0)
 3> OR GID = 1;

 GID X
-------- ------------
 1 0.00000E+00
 9 3.00000E+00
 10 4.00000E+00

.... 3 Entries Selected

OPERATOR PURPOSE

AND Logical conjunction

OR Logical disjunction

NOT Logical Negation

= Equality

<> Inequality

< Less than

> Greater than

<= Less than or equal

>= Greater than or equal

LOGICAL TRUTH TABLES

AND T F

T T F

F F F

OR T F

T T T

F T F

Table 4-1. Logical and Relational Operators

eShell User’s Manual

RETRIEVING DATA FROM RELATIONS 4-5

SELECTING FROM A SET

A special operator, IN , is available to allow a selection of data to be based
upon a set of specific values. A Set is a finite group of values with consis-
tent data types. You may also select from values not in the set by using
the optional keyword NOT. The general form of the WHERE clause to do
this is:

WHERE attribute_name [NOT] IN (set_definition)

where the set_definition is one or more values, separated by com-
mas, for the attribute_name which are to be selected from the Rela-
tion.

Example 4-9. Select all grid points with X coordinates of 3.0 or 4.0 using
a set definition.

eSh> SELECT GID,X,Y,Z FROM GRID WHERE X IN (3.0,4.0);

 GID X Y Z
-------- ------------ ------------ ------------
 4 3.00000E+00 1.00000E+00 0.00000E+00
 5 4.00000E+00 1.00000E+00 0.00000E+00
 9 3.00000E+00 0.00000E+00 0.00000E+00
 10 4.00000E+00 0.00000E+00 0.00000E+00

.... 4 Entries Selected

COMPARING TO A SET

It is also possible to compare an attribute to a set of values using the
form:

WHERE attribute_name rel_operator





ALL
SOME
ANY




 (subquery)

Any of the rel_operators shown in Table 4-1 may be used in this
expression. This comparison is used when you wish to quantify the
members of a subquery which is described later in this Chapter.

USING ARITHMETIC EXPRESSIONS

The last two sections have illustrated how logical and Relational expres-
sions can be used to qualify the data to be selected from a Relation.
eQL commands can also contain arithmetic expressions that combine at-
tribute names, constants and functions. Such expressions can be used as
selections. When this is done, the selection is called a Virtual Attribute,
because it only exists as the result of the query. All of the rules for
arithmetic expression evaluation also follow the standard rules of For-
tran.

User’s Manual eShell

4-6 RETRIEVING DATA FROM RELATIONS

Example 4-10. List the grid point identification numbers and the dis-
tance that the grid point is from the origin for grid points
having Y-coordinates of 1.0.

eSh> SELECT GID,SQRT(X**2+Y**2+Z**2) FROM GRID
 2> WHERE Y = 1.0;

 GID SQRT(X**2+Y**2+Z**2)
-------- --------------------
 1 1.00000E+00
 2 1.41421E+00
 3 2.23607E+00
 4 3.16228E+00
 5 4.12311E+00

.... 5 Entries Selected

FUNCTION PURPOSE
ALLOWED INPUT TYPES

INT RSP RDP CSP CDP

ABS(x) Absolute value ■ ■ ■ ■ ■

ACOS(x) Inverse trigonometric cosine ■ ■ ■

ASIN(x) Inverse trigonometric sine ■ ■ ■

ATAN(x) Inverse trigonometric tangent ■ ■ ■

CMPLX(x,y) Convert to CSP ■ ■ ■

COS(x) Trigonometric sine ■ ■ ■

COSH(x) Hyperbolic cosine ■ ■ ■

DCMPLX(x,y) Convert to CDP ■ ■ ■ ■

DBLE(x) Convert to RDP ■ ■ ■ ■ ■

EXP(x) Exponential function ex
■ ■ ■ ■ ■

INT(x) Convert to INT ■ ■ ■ ■ ■

LOG(x) Natural (base e) logarithm ■ ■ ■ ■ ■

LOG10(x) Common (base 10) logarithm ■ ■ ■

MOD(x) Remainder ■ ■ ■

REAL(x) Convert to RSP ■ ■ ■ ■ ■

SIN(x) Trigonometric sine ■ ■ ■

SINH(x) Hyperbolic sine ■ ■ ■

SQRT(x) Square root ■ ■ ■ ■ ■

TAN(x) Trigonometric tangent ■ ■ ■

TANH(x) Hyperbolic tangent ■ ■ ■

Table 4-2. Arithmetic Functions

eShell User’s Manual

RETRIEVING DATA FROM RELATIONS 4-7

Note that the column label is identified by the actual equation used to
define the virtual attribute, and the field width is lengthened to accom-
modate it. Similarly, arithmetic expressions may be used as constraints in
a WHERE_part.

Example 4-11 Select all element identification numbers from Relation
Q4STR[1] where the Normal-Y stresses, SIGY, are at
least twice the Normal-X stresses, SIGX.

eSh> SELECT EID,SIGY FROM /RESULT/Q4STR[1] WHERE
 2> SIGY >= 2.0*SIGX;

 EID SIGY
-------- ------------
 1 2.00000E+06
 2 1.00000E+07

.... 2 Entries Selected

Built-in arithmetic functions, also found in Fortran, are available to sup-
port the most frequently used operators. These are shown in Table 4.2
along with the allowable Numeric Types of their arguments. The results
of each function are coerced to the required Numeric Type.

THE JOIN OPERATION

Previous sections have illustrated the manner in which a single Relation
is queried. A special operation, called the Join, is available to allow the
selection of data from more than one Relation and to combine this into a
single result. The Relationship of entries in two or more Relations is
determined by the field values in the entry. For example, both the
QUAD4 Relation and the PSHELL Relation have an attribute called
PID , the property identification number. This commonality of data al-
lows entries in QUAD4 to be related to those in PSHELL.

☞

eBase is not a pure Relational database. The Relational schema are
not independent of the entities. This means that it is possible for two
Relations to have attributes of the same name which are not in fact
from the same domain. You must therefore make certain that any
operations between Relations are valid.

This process is defined more formally by the JOIN operation which is
performed with a query as shown in the next example. Suppose that you
want to know the material property identification number (MID) of
QUAD4 element number 1. The QUAD4 Relation does not contain the
MID, but the PSHELL Relation does. This is similar to the pointer con-
cept familiar to those using finite element analysis systems. By in-
spection, it is seen that EID 1 has a PID of 1 and that, from the
PSHELL Relation, PID of 1 has an MID of 101 . This is the answer that is
desired.

User’s Manual eShell

4-8 RETRIEVING DATA FROM RELATIONS

Example 4-12. Find the element identification number, EID , and prop-
erty identification number, PID , for element 1 from the
QUAD4 Relation and determine the material property
identification number, MID, of the element from Rela-
tion PSHELL.

eSh> SELECT EID,QUAD4.PID,MID
 2> FROM QUAD4,/MODEL/PSHELL
 3> WHERE EID = 1
 4> AND QUAD4.PID = PSHELL.PID;

 EID PID MID
-------- -------- --------
 1 1 101

.... 1 Entry Selected

The syntax of the SELECT command is different from that seen earlier.
The first difference occurs in the attrib_list being selected. The sec-
ond attribute, QUAD4.PID, has a different form. It indicates that the PID
attribute should be taken from the Relation QUAD4. The general form for
the attrib_list is now modified to allow this. The list is comprised of
attrib_term s which have the form:

attrib_term ⇒ [Relation _name .] attribute_name

The second difference appears in the FROM_part , which now has more
than one Relation. Indeed, it lists all Relations from which the at-
trib_list will be drawn. Note that only attributes which appear in
more than one Relation must be prefixed by the Relation name.

The WHERE_part specifies that only the entry from Relation QUAD4 with
an EID of 1 will be retrieved, and then it specifies that if the PID of this
entry is the same as the PID in a PSHELL entry, join the entries. The
earlier portion of the SELECT has requested only that the EID , PID and
MID fields of the resulting joined entry should be printed.

If there is only a single search condition in the WHERE_part, and this
search condition is equality, then the operation is called an Equi-join.

Example 4-13. Join the QUAD4 Relation to the PSHELL Relation and
retrieve the element identification number, EID , prop-
erty identification number, PID , and material identifica-
tion number, MID, for each element.

eSh> SELECT EID,QUAD4.PID,MID
 2> FROM QUAD4,/MODEL/PSHELL WHERE
 3> QUAD4.PID = PSHELL.PID;
 EID PID MID
-------- -------- --------
 1 1 101
 2 2 201
 3 1 101
 4 2 201

.... 4 Entries Selected

eShell User’s Manual

RETRIEVING DATA FROM RELATIONS 4-9

When you perform a JOIN operation using Relations from more than
one Directory, you use a special form of the FROM_list and the SE-
LECT_list . The FROM_list specifies the names of the Relations in the
form:

rel_name_1 [alt_1] , rel_name _2 [alt_2], ...

where alt_1 is a Basic Name that is used to reference the specified
rel_name_1 everywhere within the query. For example, the query of
Example 4-13 can be written as:

eSh> SELECT EID,A.PID,MID FROM
 2> QUAD4 A,/MODEL/PSHELL WHERE
 3> A.PID = PSHELL.PID;

where the Relation QUAD4 has been assigned the symbol A. The use of
alt names in the SELECT_list is useful if the Relations referenced in
the FROM_list are specified as fully qualified names. For example:

eSh> SELECT EID,A.PID,MID FROM
 2> /GEOM/QUAD4 A,/MODEL/PSHELL B WHERE
 3> A.PID = B.PID;

A special convention allows you to use the Basic Name of the Relation as
the alt name:

eSh> SELECT EID,QUAD4.PID,MID FROM
 2> /GEOM/QUAD4,/MODEL/PSHELL WHERE
 3> QUAD4.PID = PSHELL.PID;

If several subscripted versions on an entity are involved in a query, then
it is necessary to use an alt name to differentiate the selected attributes:

eSh> SELECT A.SIGX,B.SIGX FROM
 2> /RESULT/Q4STR[1] A, /RESULT/Q4STR[2]

User’s Manual eShell

4-10 RETRIEVING DATA FROM RELATIONS

GROUPING DATA DURING THE SELECTION

You may group the results of a query by using the GROUP_part in the
SELECT command. The grouping operation partitions the Relation into
a number of subsets based on identical values of one or more attrib-
utes. The GROUP_part follows the WHERE_part and has the form:

SELECT select_list
FROM_part
[WHERE_part]

[GROUP_part]
[ORDER_part] ;

GROUP_part ⇒ GROUP BY attribute_list

where the attribute_list is a list of one or more attribute names.

☞
The grouping on floating point attributes (RSP, RDP, CSP or RDP) is not
allowed because, even though a TOLERANCE may be specified, the
partitioning is ambiguous.

Example 4-14. Query the Relation QUAD4 and group the results on the
property identification number, PID .

eSh> SELECT PID FROM QUAD4
 2> GROUP BY PID;

 PID

 1
 2

.... 2 Entries Selected

The grouping of the results of a query is especially useful when group
operations are performed on the results.

Example 4-15. Find the maximum Normal-X stress for each property
identification number used for QUAD4 elements.

eSh> SELECT QUAD4.PID,MAX(Q4STR.SIGX)
 2> FROM QUAD4,/RESULT/Q4STR[1]
 3> WHERE QUAD4.EID = Q4STR.EID
 4> GROUP BY QUAD4.PID;

 PID MAX(SIGX)
-------- ------------
 1 2.00000E+06
 2 3.00000E+06

.... 2 Entries Selected

Notice that a join condition, described in more detail later in this Chapter,
was required to attach the common attribute EID between the Relations
QUAD4 and Q4STR[1] . The maximum stress was then extracted from
each of the groups. Also note that the Q4STR[1] relation was fully quali-
fied since in was not in the Current Working Directory.

eShell User’s Manual

RETRIEVING DATA FROM RELATIONS 4-11

SORTING DATA DURING THE SELECTION

You may also order, or sort, the results of a query by using the OR-
DER_part in the SELECT command. The sorting operation may be per-
formed on one or more of the attributes which appear in the
select_list . When present, the ORDER_part appears last in the
query. The form of this clause is:

SELECT select_list
FROM_part
[WHERE_part]
[GROUP_part]

[ORDER_part] ;

ORDER_part> ⇒ ORDER BY sort_list

where the sort_list is a list of one or more sort_term s, separated by
commas, which have the form:

sort_term> ⇒




 attribute _name
 ordinal




 




 ASC____ENDING
 DESC_____ENDING 




where each attribute_name must appear in the select_list . The
alternate form ordinal allows the attribute to be specified as an integer
value which corresponds to the order of the appearance of the attribute
in the select_list . Either form may be used interchangeably — some
attributes may be named while others are selected by their Ordinal. It is
required that Virtual Attributes be referenced by their Ordinal. All sort-
ing is performed in ascending order, ASCENDING, unless the optional
keyword DESCENDING is present for a particular attribute, in which case
the sort is in descending order. Sorting is performed in the sequence
specified in the ORDER_part .

Example 4-16. Query the Relation Q4STR[1] and order the results on
SIGX and SIGY.

eSh> SELECT * FROM /RESULT/Q4STR[1]
 2> ORDER BY SIGX,SIGY;

 EID SIGX SIGY TAUXY
-------- ------------ ------------ ------------
 1 1.00000E+06 2.00000E+06 4.00000E+04
 4 2.00000E+06 1.00000E+06 5.00000E+04
 3 2.00000E+06 3.00000E+06 4.00000E+04
 2 3.00000E+06 1.00000E+07 6.00000E+03

.... 4 Entries Selected

If an ORDER_part is used with a GROUP_part, then the sorting opera-
tion is performed separately on each group created as illustrated in the
next example.

User’s Manual eShell

4-12 RETRIEVING DATA FROM RELATIONS

Example 4-17. Repeat example 4-13 ordering the resulting stresses in de-
scending order.

eSh> SELECT QUAD4.PID,MAX(Q4STR.SIGX)
 2> FROM QUAD4,/RESULT/Q4STR[1]
 3> WHERE QUAD4.EID=Q4STR.EID
 4> GROUP BY QUAD4.PID
 5> ORDER BY 2 DESC;

 PID MAX(SIGX)
-------- ------------
 2 3.00000E+06
 1 2.00000E+06

.... 2 Entries Selected

THE SUBQUERY

One of the most powerful aspects of the eQL language is its provision for
subqueries to appear in SELECT commands. A Subquery is simply a com-
plete SELECT that is used in the WHERE_part of another query com-
mand. Consider the following example.

Example 4-18. Determine the thickness of QUAD4 element EID=4 by first
determining its property identification number, PID , and
then finding the thickness used by elements with that
property from Relation PSHELL.

eSh> SELECT PID FROM QUAD4 WHERE EID=4;

 PID

 2

.... 1 Entry Selected
eSh> SELECT T FROM /MODEL/PSHELL WHERE PID=2;

 T

 5.00000E-01

.... 1 Entry Selected

Note that in this case the result of the first query was used to determine
the selection criteria for the second. The same result may be obtained by
using a subquery.

Example 4-19. Determine the same information as in Example 4-16 us-
ing a single query with a subquery in the WHERE_part.

eSh> SELECT T FROM /MODEL/PSHELL WHERE
 2> PID = (SELECT PID FROM QUAD4 WHERE
 3> EID=4);

 T

 5.00000E-01

.... 1 Entry Selected

eShell User’s Manual

RETRIEVING DATA FROM RELATIONS 4-13

The subquery in the last example returned a single value which was used
as the selection criteria. Subqueries may also return a set of values that
may be used to determine the selection.

Example 4-20. Find the shear stress , TAUXY, for Subcase 1 ,Q4STR[1] ,
for all elements whose TAUXY is greater than all shear
stresses in Subcase 2, Q4STR[2] . Select both the element
EID and the TAUXY value.

eSh> SELECT EID,TAUXY FROM /RESULT/Q4STR[1] WHERE
 2> TAUXY > ALL (SELECT TAUXY FROM /RESULT/Q4STR[2]);

 EID TAUXY
-------- ------------
 1 4.00000E+04
 3 4.00000E+04
 4 5.00000E+04

.... 3 Entries Selected

The result of the subquery is a list of all TAUXY from the Relation
Q4STR[2] . Since it is desired to find the TAUXY which is greater than all
of these values, the quantifier ALL must be used. More than one
subquery may be used to perform the selection, as shown next.

Example 4-21. Find the QUAD4 elements having a thickness of 0.5 and
whose Normal-X stress, SIGX, for Subcase 1, Q4STR[1] ,
is greater than 2.0E+6 .

eSh> SELECT EID FROM QUAD4
 2> WHERE PID IN (SELECT PID FROM /MODEL/PSHELL
 3> WHERE T = 0.5)
 4> AND EID IN (SELECT EID FROM /RESULT/Q4STR[1]
 5> WHERE SIGX > 2.0E+6);

 EID

 2

.... 1 Entry Selected

Additionally, subqueries may be nested to create complex selection crite-
ria.

User’s Manual eShell

4-14 RETRIEVING DATA FROM RELATIONS

Example 4-22. Find the GID and X-coordinate of each grid point that
appears as the first grid point in a QUAD4 element which
has a thickness of 0.1 .

eSh> SELECT GID,X FROM GRID
 2> WHERE GID IN (SELECT G1 FROM QUAD4 WHERE
 3> PID IN (SELECT PID FROM /MODEL/PSHELL WHERE
 4> T = 0.1));

 GID X
-------- ------------
 1 0.00000E+00
 3 2.00000E+00

.... 2 Entries Selected

GROUP OPERATORS

In addition to the arithmetic and logical operators that have been de-
scribed, eQL also supports certain group operators. These operators are
so designated because they are performed on one or more attributes
across a group of entries from a Relation. These group functions are
shown in Table 4-3.

The use of the group functions is like that of normal arithmetic functions,
namely the argument must be enclosed in parentheses.

Example 4-23. Find the average X-coordinate for all grid points having a
Y-coordinate of 1.0 .

eSh> SELECT AVG(X) FROM GRID WHERE Y = 1.0;

 AVG(X)

 2.00000E+00

.... 1 Entry Selected

Naturally, the WHERE_part restricts the set of data for which the func-
tion, AVG in this case, is applied. Multiple attributes may be computed

OPERATOR DESCRIPTION

AVG
Computes the average value of the specified attribute expression
for all entries satisfying the selection criteria.

SUM Computes the arithmetic sum of the expression.

MIN Finds the algebraically smallest value of the expression.

MAX Find the algebraically largest value of the expression.

COUNT Counts the number of entries satisfying the given conditions.

Table 4-3. Group Operators

eShell User’s Manual

RETRIEVING DATA FROM RELATIONS 4-15

with group functions,but these functions may not be used in other arith-
metic expressions.

Example 4-24. Find the maximum Normal-X stress and minimum Nor-
mal-Y stress for Subcase 1.

eSh> SELECT MAX(SIGX),MIN(SIGY)
 2> FROM Q4STR[1];

 MAX(SIGX) MIN(SIGY)
------------ ------------
 3.00000E+06 1.00000E+06

.... 1 Entry Selected

When using group functions, it is not allowed to also select individual
attributes such as:

eSh> SELECT GID,AVG(SQRT(X**2+Y**2+Z**2)) FROM GRID;

unless the individual attributes are later specified in a GROUP_part of
the query. This is because attributes refer to fields within each entry
whereas the group operation refers to all entries.

Example 4-25. Find all grid points which have the greatest X-coordinate.

eSh> SELECT GID FROM GRID
 2> WHERE X = (SELECT MAX(X) FROM GRID);

 GID

 5
 10

.... 2 Entries Selected

There is one case in which single attribute names may appear in a SE-
LECT command along with group operators. This is allowed when a
GROUP_part is included as part of the selection criteria, as shown in the
next example. It is this feature that differentiates the grouping and order-
ing operations. Also note that, in this case, the subquery returns a single
value. Therefore, the strict equality is specified without resorting to one
of the quantifiers ALL, ANY or SOME. If groups exist, then a single value,
or list of values, is returned for each group.

User’s Manual eShell

4-16 RETRIEVING DATA FROM RELATIONS

Example 4-26. Find the maximum grid point identification number used
as G3 in the QUAD4 Relation for each property identifi-
cation number, PID .

eSh> SELECT PID,MAX(G3) FROM QUAD4
 2> GROUP BY PID;

 PID MAX(G3)
-------- --------
 1 9
 2 10

.... 2 Entries Selected

This operation is possible because the GROUP_part has partitioned the
Relation into groups upon which the group operator MAX can function.
Note that the ORDER_part does not allow this type of operation to be
performed because it does not partition the data into distinct groups. The
COUNT function is used to count the number of entries that satisfy the
given selection criteria. The general form of this function is:

COUNT (




∗
 DISTINCT attrib _name




)

where the shorthand notation (*) indicates that all entries will be
counted. If DISTINCT attribute_name is specified, then the number
of entries which have distinct nonnull values for that attribute will be
counted.

Example 4-27. Count the number of QUAD4 elements with a PID of 2.

eSh> SELECT COUNT(*) FROM QUAD4
 2 WHERE PID = 2;
COUNT(*)

 2

.... 1 Entry Selected

Example 4-28. Count the number of unique values of PID in Relation
QUAD4.

eSh> SELECT COUNT(DISTINCT PID) FROM QUAD4;

COUNT(DISTINCT PID)

 2

.... 1 Entry Selected

eShell User’s Manual

RETRIEVING DATA FROM RELATIONS 4-17

 INTERSECTION, UNION AND DIFFERENCE

There are three additional Relational operations that are often useful.
Their primary use is to compare or merge two Relations having ex-
actly the same schema. The intersection of two Relations is the set of
entries that occur in both Relations that are identical in all fields. The
command to perform this operation is:

SELECT INTERSECTION OF rel_name_1 AND rel_name_2
[AS rel_name_3] ;

The INTERSECT command is a special form of SELECT. Note that only
the distinct entries common to both Relations will result from this com-
mand and that no WHERE_part, GROUP_part, or ORDER_part may be
used. If you wish to save the resulting Relation, the optional AS clause is
used. Both of these facts are true of the next two commands, SELECT
UNION and SELECT DIFFERENCE as well. This is of no significance
because the new Relation, rel_name_3 , is created from these com-
mands. It may then be queried in any manner. You must have the AD-
MINISTRATION privilege on the databases containing rel_name_1 ,
rel_name_2 , and rel_name_3 .

Example 4-29. Find the intersection of Relations Q4STR[1] and
Q4STR[2] .

eSh> CD /RESULT;
eSh> SELECT INTER OF Q4STR[1] AND Q4STR[2];
.... No Entries Selected

This example verifies that there are no common entries in the two ver-
sions of Q4STR!

The union of two Relations having the same schema is defined as the
collection of all distinct entries that appear in either of them. This
union is performed with the command:

SELECT UNION OF rel_name_1 AND rel_name_2
[AS rel_name_3];

Example 4-30. Find the union of Relations Q4STR[1] and Q4STR[2] .

eSh> SELECT UNION OF Q4STR[1] AND Q4STR[2];

 EID SIGX SIGY TAUXY
-------- ---------- ---------- ----------
 1 1.00000E+6 2.00000E+6 4.00000E+4
 1 7.00000E+7 0.0 3.00000E+3
 2 1.00000E+6 1.00000E+7 6.00000E+3
 3 2.00000E+6 3.00000E+6 4.00000E+4
 3 5.00000E+7 0.0 1.00000E+4
 4 2.00000E+6 1.00000E+6 5.00000E+4

.... 6 Entries Selected

User’s Manual eShell

4-18 RETRIEVING DATA FROM RELATIONS

Finally, the difference of two Relations is the set of all entries in
rel_name_1 that are not in rel_name_2 . The command to perform
this operation is:

SELECT DIFFERENCE OF rel_name_1 AND rel_name_2
[AS rel_name_3];

Example 4-31. Find the difference of Relations Q4STR[1] and
Q4STR[2] .

eSh> SELECT DIFF OF Q4STR[1] AND Q4STR[2];

 EID SIGX SIGY TAUXY
-------- ---------- ---------- ----------
 1 1.00000E+6 2.00000E+6 4.00000E+4
 3 5.00000E+7 0.0 1.00000E+4

.... 2 Entries Selected

☞
The important point to remember is that these operations function only
for two Relations having the same schemata.

eShell User’s Manual

RETRIEVING DATA FROM RELATIONS 4-19

This page is intentionally blank.

User’s Manual eShell

4-20 RETRIEVING DATA FROM RELATIONS

5. GRAPHING RETRIEVED DATA

☞
You should familiarize yourself with retrieving data from Relations as
described in Chapter 4 prior to using the features described in this
Chapter.

This Chapter describes the commands used to create graphs, or plots,
from data which you retrieve from Relations. The flexibility and op-
tions available for the plotting of retrieved of data are as complex as
those of the query. This Chapter is organized in the manner of Chap-
ter 4 such that successively more advanced uses of the XYPLOT com-
mand are shown and illustrated by many examples.

☞
The graphics functions are available only for Unix workstation versions
of eShell under the X-Windowing System.

THE PLOTTING WINDOWS

All of the plots that you create are drawn in one or more Graphic Win-
dows. You can control the number of these windows and the plots that
each of them contains.

For efficiency, each plot that you create is saved temporarily during your
eShell session. This makes it possible for you to recover a plot that you
may have deleted previously. Because the data are saved, you are not
required to recreate the query that was used for creating earlier plot.

eShell User’s Manual

GRAPHING RETRIEVED DATA 5-1

Selecting the Plot Window

The plot windows are independent graphic display windows. You may
have any number of display windows open at a given time. When you
create your first plot, Plot Window 1 is created and your plot appears in
this window. This is called the Active Window.

You may define a new plot window with the command:

SET ACTIVE WINDOW TO plot_win_id ;

where plot_win_id represents the number of the active plot window.

If plot_win_id already exists, then any new plot that you create will
destroy the plot that previously occupied that window.

Once you have set the current plot window, it will be used for all sub-
sequent plots that you create until you redefine it explicitly, or clear it
using the command:

CLEAR




 PLOT WINDOW plot_win_id

 ALL PLOT WINDOWS




 ;

If you CLEAR all of the plot windows, the active window is reset to one.
As noted above, you may replot the data is a plot window with the
command:

REPLOT [plot_win_id] ;

If you do not specify a plot_win_id, then the data in the current active
window are REPLOTted.

THE PLOTTING COMMANDS

Data retrieval and plot creation are accomplished with the 2-D plotting
commands XYPLOT, ADDCURVES, and MXYPLOT. These are described in
the following sections.

THE XYPLOT COMMAND

Data retrieval and graph creation is accomplished with a single XYPLOT
command. The general form of this command is:

XYPLOT x_attrib, y_attrib_list FROM_part
[WHERE_part]
[GROUP_part]
[ORDER_part] ;

The x_attrib, y_attrib_list and FROM_part are required. As
with all queries, the WHERE_part, GROUP_part and ORDER_part are
each optional, but when any or all of them appear in the XYPLOT com-
mand they must appear in the order indicated. The richness of this com-
mand requires numerous examples.

User’s Manual eShell

5-2 GRAPHING RETRIEVED DATA

The simplest form of the command is:

XYPLOT x_attrib , y_attrib_list FROM rel_name ;

where x_attrib and the y_attrib_list , are, respectively, a single
attribute and a list of one or more attribute names, separated by commas,
that are contained in the Relation specified by rel_name . The x_at-
trib defines the x-axis of the graph and the y_attrib_list define the
y-axis data that will be plotted. Each attribute in the list results in a
separate curve on a single plot.

☞
The maximum number of curves that may appear on a single plot is nine.
Therefore, the number of elements specified in the y_attr_list may not
exceed nine.

Example 5-1. Create a plot of displacement component, T3, versus time
step, TIME, from Relation THISTORY.

eSh> CD PLOT;
eSh> XYPLOT TIME,T3 FROM THISTORY;

which results in the graph:

An example which shows multiple curves is illustrated next.

Example 5-2. Create a plot, using Relation THISTORY, of the two real
displacement components, T1 and T3, versus the time
step, TIME.

eSh> XYPLOT TIME,T1,T3 FROM THISTORY;

This results in the plot:

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

T3

eShell User’s Manual

GRAPHING RETRIEVED DATA 5-3

THE GRAPH ELEMENTS

Examples 5-1 and 5-2 illustrate the type of output that appears when a
query is performed. The XY-Plots consist of certain Graph Elements
which you may control with various eShell commands. The available
families of commands are described in the following sections.

Symbols and Lines

When you create a graph, each data point is indicated by a symbol and
the symbols are connected by lines. You may manipulate these options
with the commands:

SET SYMBOL TO




 ON
 OFF




 ;

SET DRAWLINE TO




 ON
 OFF




 ;

Titling

There are three different titling options for a graph. These are the graph
frame title, the x-axis title, and the y-axis title. A legend is automatically
placed on the plot that associates attribute names with their plot symbols.
The titles are set using the commands:

SET FTITLE TO ’text ’ ;

SET




 XTITLE
 YTITLE




 TO ’ text ’ ;

In each command, text is any character text that you wish to use for
titling information. Once you have set the titles, they remain until you
explicitly clear them using the commands:

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

T1
T3

User’s Manual eShell

5-4 GRAPHING RETRIEVED DATA

CLEAR




 FTITLE
 XTITLE
 YTITLE




 ;

☞
Remember that the titles that you set remain in effect until you either
redefine them or CLEAR them.

Example 5-3. Repeat example 5-2 adding titles to the graph.

eSh> SET FTITLE TO ’Transient Response’;
eSh> SET XTITILE TO ’Time’;
eSh> SET YTITLE TO ’X,Z Displacement’;
eSh> XYPLOT TIME,T1,T3 FROM THISTORY;

which results in the following graph, with the graphics elements anno-
tated:

Customizing the Axes

There are several commands which allow you to control the x- and y-
axes of your graphs which are described in this section.

Changing the Axis Range. You may change the ranges of the graph by
giving the largest and smallest values that you want displayed on either
axis. This is done with the commands:

SET











 XMIN
 XMAX
 YMIN
 YMAX










 TO value ;

Note that you may place multiple selections in as single command such
as:

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

X
,Z

 D
is

pl
ac

em
en

ts

Time

Transient Response

T1
T3

FTITLE

SYMBOL

YTITLE

XTITLE

DRAWLINE

LEGEND

eShell User’s Manual

GRAPHING RETRIEVED DATA 5-5

SET XMIN TO 0.0 XMAX TO 1000.0
 YMIN TO -2.0 YMAX TO 4.5;

Similar to the titling commands, these ranges remain in effect until
cleared with:

CLEAR











 XMIN
 XMAX
 YMIN
 YMAX










 ;

☞
Remember that axis ranges remain in effect until you either redefine
them or CLEAR them.

Logarithmic Scales. In addition to specifying a data range, you may also
have one or both axes represented by a logarithmic scale with the com-
mands:

SET




 XLOG
 YLOG




 TO





 ON
 OFF




 ;

You may toggle this option on or off for either or both axes.

Axis Values and Ticmarks. The number of values and ticmarks placed
on the axes may be controlled using:

SET




 XDIV
 YDIV




 TO inc ;

where inc is the increment value for the selected axis.

Drawing Grid Lines. You may request that grid lines be drawn from
each of the ticmarks on an axis with the command:

SET GRID TO




 ON
 OFF




 ;

Drawing the Axes. You may toggle the drawing of the axes with the
command:

SET AXIS TO




 ON
 OFF




 b

User’s Manual eShell

5-6 GRAPHING RETRIEVED DATA

Example 5-4. Repeat example 5-3, but this time create a blow-up be-
tween TIME values of 0.12 and 0.14 . adding titles to the
graph.

eSh> SET XMIN TO 0.12;
eSh> SET XMAX TO 0.14;
eSh> XYPLOT TIME,T1,T3 FROM THISTORY;

which results in the graph, with the graphics elements annotated:

REFERENCING A PATH DURING THE QUERY

The rel_name specified in the FROM_part of a query may include a full
path name in addition to a simple entity name. Alternately, you may set a
default path prior to the query or you may define a global symbol that is
used in the name. These are shown in the following example.

Example 5-5. Suppose that the Relation THISTORY resides in the direc-
tory /BIGPLANE/WING . The following methods may be
used to plot the Relation.

eSh> XYPLOT TIME,T1 FROM /BIGPLANE/WING/THISTORY;
 or
eSh> CD /BIGPLANE/WING;
eSh> XYPLOT TIME,T1 FROM THISTORY;
 or
eSh> DEFINE PATH=’/bigplane/wing/’;
eSh> XYPLOT TIME,T1 FROM &PATH.THISTORY;

Refer to Chapter 2 for a detailed discussion of path names.

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.12 0.125 0.13 0.135 0.14

X
,Z

 D
is

pl
ac

em
en

ts

Time

Transient Response

T1
T3

XMAX
YMIN

XMIN

GRID

YMAX

XDIV

YDIV

eShell User’s Manual

GRAPHING RETRIEVED DATA 5-7

QUALIFYING THE SELECTION

You may also create graphs for only those entries in a Relation that
satisfy a certain condition or combination of conditions. This is accom-
plished by using the following variation of the XYPLOT command:

XYPLOT x_and_y_list FROM rel_name
WHERE search_condition ;

where a search_condition is identical to that of the Relational query.

Example 5-6. Plot the T1 and T3 components in Relation GRID that
have values greater that 0.0 . First, clear the values of
XMIN and XMAX that you set in Example 5-4.

eSh> CLEAR XMIN;
eSh> CLEAR XMAX;
eSh> XYPLOT TIME,T1,T3 FROM THISTORY WHERE T1 > 0.0;

This results in the plot:

OPERATOR PURPOSE

AND Logical conjunction

OR Logical disjunction

NOT Logical Negation

= Equality

<> Inequality

< Less than

> Greater than

<= Less than or equal

>= Greater than or equal

LOGICAL TRUTH TABLES

AND T F

T T F

F F F

OR T F

T T T

F T F

Table 5-1. Logical and Relational Operators

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

X
,Z

 D
is

pl
ac

em
en

ts

Time

Transient Response

T1
T3

User’s Manual eShell

5-8 GRAPHING RETRIEVED DATA

☞
When Relational operations are performed between floating point
values it is possible for the numeric representations to cause testing
failure. This is corrected by the use of a floating point TOLERANCE on
the operations, as described in Chapter 13.

Table 5-1 reiterates the allowable logical and Relational operators that
may be used in a search_expression .

The next example illustrates the use of a logical combination of two Rela-
tional operations.

Example 5-7. Plot the displacement component, T3, for all time steps
greater than than 0.04 and less than 0.1 .

eSh> SET YTITLE TO ’Z Displacement, Narrow Time Range’;
eSh> XYPLOT TIME,T3 FROM THISTORY
 2> WHERE TIME>0.04
 3> AND TIME<0.1;

This results in the following plot:

Parentheses may be used to group and clarify more complex expressions
appearing in the search_condition .

Example 5-8. Plot the displacement component, T3, for all time steps
greater than 0.02 and less than 0.06 , or whose time step
is greater than is 0.12.

eSh> SET YTITLE TO ’Z Displacement: Two Time Ranges’;
eSh> XYPLOT TIME,T3 FROM THISTORY
 2> WHERE (TIME > 0.02 AND TIME < 0.06)
 3> OR TIME > 0.12;

which results in:

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0.04 0.05 0.06 0.07 0.08 0.09 0.1

Z
 D

is
pl

ac
em

en
t,

N
ar

ro
w

 T
im

e
R

an
ge

Time

Transient Response

T3

eShell User’s Manual

GRAPHING RETRIEVED DATA 5-9

SELECTING FROM A SET

A special operator, IN , is available to allow selection of data based upon
a set of specific values. A Set is a finite group of values with consistent
data types. You may also select from values not in the set by using the
optional keyword NOT. The general form of the WHERE clause to do this
is:

WHERE attribute_name [NOT] IN (set_definition)

where the set_definition is one or more values, separated by com-
mas, for the attribute_name which are to be selected from the Rela-
tion.

Example 5-9. Plot the X coordinates versus the grid point ID from the
Relation /GEOM/GRID where the GID has one of the val-
ues 1, 2 , 8 , 9 or 10.

eSh> CLEAR XTITLE;
eSh> CLEAR YTITLE;
eSh> CLEAR FTITLE;
eSh> CD /GEOM;
eSh> XYPLOT GID,X FROM GRID WHERE GID IN (1,2,8,9,10);

which results in:

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Z
 D

is
pl

ac
em

en
t:

T
w

o
T

im
e

R
an

ge
s

Time

Transient Response

T3

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8 9 10

X

User’s Manual eShell

5-10 GRAPHING RETRIEVED DATA

USING ARITHMETIC EXPRESSIONS

As you have seen in Chapter 4, eQL commands can contain arithmetic
expressions that combine attribute names, constants and functions. Such
expressions can be used as selections which may be plotted. When this is
done, the selection is called a Virtual Attribute, because it only exists as
the result of the query. All of the rules for arithmetic expression evalu-
ation follow the standard rules of Fortran.

Example 5-10. Create a graph with two curves using data from Relation
TRANS. The first is 100 times the z dispacement, attribute
Z, and the second is the z velocity, attribute W. Label the
plot accordingly.

eSh> CD /PLOT;
eSh> SET XTITLE TO ’Z Disp*100’;
eSh> SET YTITLE TO ’Z Velocity’;
eSh> SET FTITLE TO ’Wing: Transient Response’;
eSh> XYPLOT 100*Z,W FROM TRANS;

The resulting graph is shown below:

The ADDCURVES Command

There may be cases in which you would like to add additional curves to a
plot that you have already created. You may do this with the command:

ADDCURVES x_attrib , y_attrib_list FROM_part
 [WHERE_part]
 [GROUP_part]
 [ORDER_part] ;

As with the XYPLOT command, the x_attrib , y_attrib_list and
FROM_part are required. And again, as with all queries, the
WHERE_part, GROUP_part and ORDER_part are each optional, but
when any or all of them appear in the ADDCURVES command they must

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

1200

-800 -600 -400 -200 0 200 400 600 800

Z
 V

el
oc

ity

Z Disp*100

Wing: Transient Response

W

eShell User’s Manual

GRAPHING RETRIEVED DATA 5-11

appear in the order indicated. The specified curve, or curves, will be
added to the graph in the active plot window. If the domains of the
x_attrib and y_attrib_list are different from those of the curves
already plotted, then all data are rescaled using the union of the data
domains.

☞
Remember that the total number of curves on a plot may not exceed nine.
Thus the sum of the original number of plots created by the XYPLOT
command, plus those specified by the y_attrib_list of the
ADDCURVES command cannot exceed this value.

Example 5-11: From directory /plot create a plot of VELO versus DAMPV
from the relation ROOTS where MODE=5 and NITER=1. After this is com-
pleted, successively add new curves for values of NITER equal to 3, 5,
and 8.

XYPLOT VELO,DAMPV FROM ROOTS WHERE NITER=1 AND MODE=5;
ADDCURVES VELO,DAMPV FROM ROOTS WHERE NITER=3 AND MODE=5;
ADDCURVES VELO,DAMPV FROM ROOTS WHERE NITER=5 AND MODE=5;
ADDCURVES VELO,DAMPV FROM ROOTS WHERE NITER=8 AND MODE=5;

Which results in the sequence of plots shown below.

-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

500 550 600 650 700 750 800 850 900 950

DAMPV
DAMPV

-0.055

-0.05

-0.045

-0.04

-0.035

-0.03

-0.025

500 550 600 650 700 750 800 850 900 950

DAMPV

-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

500 550 600 650 700 750 800 850 900 950

DAMPV
DAMPV
DAMPV
DAMPV

-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

500 550 600 650 700 750 800 850 900 950

DAMPV
DAMPV
DAMPV

User’s Manual eShell

5-12 GRAPHING RETRIEVED DATA

The MXYPLOT Command

Often the data stored in a relation represent repeated sets of values that
vary for a given parameter. As an example, consider the following:

PARAMETER X Y

1 1.0 5.0

1 2.0 10.0

1 3.0 15.0

2 1.0 28.0

2 2.0 42.0

2 3.0 56.0

3 1.0 100.0

3 2.0 101.0

3 3.0 102.0

You would like to create three separate curves represented by the (X,Y)
pairs appearing in the relation. Each curve will represent a different
value of PARAMETER. This is done with the command:

MXYPLOT param , x_attrib , y_attrib FROM_part
 [WHERE_part]
 [GROUP_part]
 [ORDER_part] ;

As with the other plot commands, the x_attrib , y_attrib_list and
FROM_part are required, and the other clauses are optional.

This command results in one curve for each unique value of param re-
trieved from the specified relation. Only one attribute may be specified
for the x-axis and y-axis of the plot. The axes are scaled based on the
union of all of the plots that will be drawn.

Example 5-12: In directory /plot , the relation ROOTS contains data that
represent velocity (VELO) and damping (DAMPV) curves. There are com-
plete curves for each MODE and for each ITERation in the solution proce-
dure. Plot individual velocity-damping curves for each iteration for
MODE=5.

MXYPLOT NITER,VELO,DAMPV FROM ROOTS
 WHERE MODE=5;

eShell User’s Manual

GRAPHING RETRIEVED DATA 5-13

This results in a single plot that includes nine curves, one for each value
of NITER . The scaling of the plots encompasses the full range of values
found in the data. The final plot is shown below.

-0.1

-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

500 550 600 650 700 750 800 850 900 950

NITER 1
NITER 2
NITER 3
NITER 4
NITER 5
NITER 6
NITER 7
NITER 8
NITER 9

User’s Manual eShell

5-14 GRAPHING RETRIEVED DATA

6. INDEXING RELATIONAL ENTITIES

When you perform queries on very large Relational entities, they may
require a significant amount of elapsed time. To improve response time,
you may build one or more Indexes for a Relation. The methods for
doing this are described in this Chapter.

THE INDEX CONCEPT

An index for a Relational entity serves the same purpose as an index in a
book — it allows faster access to the information that you wish to find.
Similarly, eShell allows you to build one or more indexes for the attrib-
utes of a Relation so that the program may gain rapid access to the
data. If a Relation has no index, then all queries must search through
the data sequentially. As a result, indexes can dramatically increase
the speed with which queries are performed.

CREATING THE INDEX

You create an index for a Relation with the command:

CREATE [UNIQUE] INDEX ON rel_name
(attr_name_list) ;

The rel_name is the name of an existing Relation, and
attr_name_list specifies one or more attribute names for which the
index will be created. These attributes form the Key for each entry in the
Relation. Only attributes having data types of INT and CHAR may be
used as indexes. To index other types of attributes, special artifices may
be used as described later in this Chapter. A UNIQUE index is one in
which each Key value is different from every other Key value. If the
index Key is comprised of multiple attributes, although each individual

eShell User’s Manual

INDEXING RELATIONAL ENTITIES 6-1

attribute may have a duplicated value, the combination of all the attrib-
utes in the Key must be unique.

Example 6-1. In Directory called TUTOR, make a copy of Relation
/RESULT/Q4S called IDX_Q4S, and create an index for
IDX_Q4S on attribute CASE.

eSh> MKDIR TUTOR;
eSh> CD TUTOR;
eSh> COPY /RESULT/Q4S TO IDX_Q4S;
eSh> CREATE INDEX ON IDX_Q4S(CASE);
.... Index Created

Indexes may also be used to enforce the uniqueness of one or more
attributes in a Relation. Consider the following example:

Example 6-2. Now, make a copy of Relation /GEOM/GRID called
IDX_GRID and create a unique index for it on attribute
GID.

eSh> COPY /GEOM/GRID TO IDX_GRID;
eSh> CREATE UNIQUE INDEX ON IDX_GRID(GID);
.... Index Created

If this index has been created, then you may not insert data into the
Relation which has the same index value as an existing one for the
specified attributes.

Example 6-3. Add a new entry to Relation IDX_GRID which has GID=1 .

eSh> INSERT INTO IDX_GRID
 2> VALUES(1,1,5.,5.,5.);
ERR> Duplicate Key Encountered

Also note that the uniqueness check is applied when you perform an
UPDATE operation on an indexed Relation.

User’s Manual eShell

6-2 INDEXING RELATIONAL ENTITIES

IMPROVING QUERY PERFORMANCE

Indexes for a Relation are only used when you perform a query which is
qualified by a WHERE clause. In such cases, eShell uses the index data to
rapidly process the entries in the entity. To understand how to model
your data for optimum performance, consider the following Relation
named RESULT.

GID
(INT)

TIME
(RSP)

DISP_X
(RSP)

DISP_Y
(RSP)

DISP_Z
(RSP)

101 0.0 0.03 0.02 0.04

102 0.0 0.02 0.01 0.02

...

101 0.1 0.05 0.01 0.03

102 0.1 0.07 0.03 0.06

...

RESULT has five attributes, a grid point identification number, GID, a
time, TIME, and three results values called DISP_X, DISP_Y and
DISP_Z . Now, suppose that you want to perform the following query:

eSh> SELECT * FROM RESULT
 2> WHERE GID=101;
....
.... Result of query is printed
....

If there are tens of thousands of entries in RESULT, it would take a large
amount of time to search through the entries sequentially to extract the
desired selection. By first creating an index:

eSh> CREATE INDEX ON RESULT(GID);
.... Index Created

the same query can be processed very rapidly. On the other hand, sup-
pose you want:

eSh> SELECT * FROM RESULT
 2> WHERE TIME=0.1;
....
.... Result of query is printed
....

This query also results in a sequential search which must check each
entry. Since an attribute of type RSP cannot be indexed, it appears that
query performance will be slow. If you intended to access the data in this
manner, a simple artifice can be used to allow the creation of an attribute
index. One way to do this is to model the data as:

eShell User’s Manual

INDEXING RELATIONAL ENTITIES 6-3

GID
(INT)

TIME
(RSP)

TIME_STEP
(INT)

DISP_X
(RSP)

DISP_Y
(RSP)

DISP_Z
(RSP)

101 0.0 1 0.03 0.02 0.04

102 0.0 1 0.02 0.01 0.02

...

101 0.1 2 0.05 0.01 0.03

102 0.1 2 0.07 0.03 0.06

...

Here a new attribute called TIME_STEP of type INT has been introduced
as a counter for the RSP attribute TIME. Now, to rapidly access the data,
the following commands may be used:

eSh> CREATE INDEX ON RESULT(TIME_STEP);
.... Index Created

Finally, if you were directly accessing individual grid points at specific
times, efficiency would be maximized by defining a two-attribute index:

eSh> CREATE INDEX ON RESULT(GID,TIME_STEP);
.... Index Created

Now, any query of the form:

eSh> SELECT * FROM RESULT
 2> WHERE GID=102 AND TIME_STEP=2;
....
.... Result of query is printed
....

will be able to use the index for rapid access.

INDEX PERFORMANCE

The use of indexes can dramatically improve performance when the Re-
lational entity is accessed in the order of an attribute index or when
entries are selected which have specified indexed attribute values. To see
the impact of indexing, consider the following example.

User’s Manual eShell

6-4 INDEXING RELATIONAL ENTITIES

Example 6-4: Study the performance of indexes using Relation
/RESULT/BIGREL on the TESTEB: database.

eSh> CD ../RESULT;
eSh> DESCRIBE BIGREL;
.... Relation TESTEB:/RESULT/BIGREL
.... Schema is:
.... Attribute Type Len
.... --------- ---- -----
.... ATT1 INT 1
.... ATT2 INT 1
.... ATT3 INT 1
.... Current Contents 10000 Entries

Now, perform a query of BIGREL and observe the elapsed time needed
to retrieve the required entry:

eSh> START BIGREL;
eSh> SELECT ATT3 FROM BIGREL
 2> WHERE ATT1 = 10000;

 ATT3

 10000

.... 1 Entry Selected

Next, create an index for ATT1:

eSh> CREATE INDEX ON BIGREL (ATT1);
.... Index Created

Perform the query again and note the results. This has undoubtedly con-
vinced you of the value of indexing when a Relation will be queried for
specific entries.

☞

If you have Relational entities with a large number of entries (many
thousands) and you are going to perform many queries against the data,
then create as many Indexes as necessary — the access speed-up will
always be significant and the overhead needed to created the indexes is
negligible by comparison.

eShell User’s Manual

INDEXING RELATIONAL ENTITIES 6-5

INDEX OVERHEAD

There is a certain amount of overhead when you create an index for a
Relation. You will have noticed this while performing Example 6-4. How-
ever, also note that this overhead occurs only once and is well worth the
investment if a large number of queries will be made on a specific Rela-
tion. At the same time, an index slows down INSERT and UPDATE opera-
tions because each of the indexes that you have created must also be
updated.

PURGING AN INDEX

Performance is improved if you purge any indexes which are not being
used. This is done with the command:

PURGE INDEX ON rel_name (attr_name_list) ;

where attr_name_list is a list of the attributes used in a previously
created index for the Relational entity rel_name . Recall that you may
use the DESCRIBE command to obtain a listing of the indexes for the
Relation as shown in the following example.

Example 6-5: Remove the indexes of Relation BIGREL that you created
in Example 6-4.

eSh> DESCRIBE BIGREL;
.... Relation TESTEB:/RESULT/BIGREL
.... Schema is:
.... Attribute Type Len
.... --------- ---- -----
.... ATT1 INT 1
.... ATT2 INT 1
.... ATT3 INT 1
.... Current Contents x Entries
.... 2 INDEXES EXIST:
.... 1 on ATT1
.... 2 on ATT1 and ATT2
eSh> PURGE INDEX ON BIGREL (ATT1);
.... Index has been Purged
eSh> PURGE INDEX ON BIGREL (ATT1,ATT2);
.... Index has been Purged

✔
Clean-up your /TUTOR/ Directory to restore your TESTEB: database to
its initial state.

User’s Manual eShell

6-6 INDEXING RELATIONAL ENTITIES

7. RETRIEVING DATA FROM
NON-RELATIONAL ENTITIES

In addition to the powerful querying operations for Relational entities
described in the previous Chapter, you may also perform queries on the
data for Matrix entities, Freeform entities, and Stream entities. The meth-
ods for doing this are described in this Chapter.

MATRIX ENTITIES

This section describes the commands that you may use to retrieve data
from Matrix entities. These commands are similar in nature to those
available for querying Relations and allow the display of Matrix data in
two different forms.

The MATRIX Select Command

Data can be selected from Matrices in a manner similar to that used for
Relations. The general form of the Matrix query command is:

MATRIX SELECT [format]
select_list
FROM mat_name
[WHERE_part] ;

eShell User’s Manual

RETRIEVING DATA FROM NON-RELATIONAL ENTITIES 7-1

The retrieval of the Matrix data depends on the Orientation of the Ma-
trix. For Column-major Matrices, columns are retrieved, and for Row-
major Matrices, rows are retrieved.

The format defines the display option that will be used. The display
options are summarized in Table 7-1.

MATRIX SELECT [format]
select_list
FROM mat_name
[WHERE_part] ;

format ⇒ (



 FULL
 BANDED




)

If the display format is omitted, and the Storage Mode of the Matrix is
COMPRESSED, then the BANDED option is used. For the UNCOMPRESSED
Storage Mode, only the FULL option is used. The select_list allows
you to select only some of the COLUMNs or ROWs of the entity:

MATRIX SELECT [format]

select_list
FROM mat_name
[WHERE_part] ;

select_list ⇒




 term_list
 ∗





Where the term_list is a list of column or row identification numbers
depending on the Orientation of the Matrix. Only the terms specified in
this list will be extracted from the Matrix. You may select all values by
using the asterisk (*) shorthand notation. The Matrix entity that you are
querying is specified by mat_name .

OPTION DESCRIPTION

FULL Prints all terms in the Matrix. Default for UNCOMPRESSed Matrices.

BANDED
Prints terms in each column beginning with the first nonzero term
and ending with the last nonzero term. Defaultfor COMPRESSed
Matrices.

Table 7-1. Matrix Print Options

User’s Manual eShell

7-2 RETRIEVING DATA FROM NON-RELATIONAL ENTITIES

The following examples illustrate the use of these options.

Example 7-1. Query the KGG Matrix obtaining a FULL listing.

eSh> MATRIX SELECT(FULL) * FROM KGG;

Column Major, Compressed, Real, Double Precision, Symmetric
 6 Rows, 6 Columns, Density = 52.0%
--
Column 1
100.000 200.000 0.00000 0.00000 0.00000 0.00000
--
Column 2
200.000 300.000 400.000 0.00000 0.00000 0.00000
--
Column 3
0.00000 400.000 500.000 600.000 0.00000 0.00000
--
Column 4
0.00000 0.00000 600.000 700.000 800.000 0.00000
--
Column 5
0.00000 0.00000 0.00000 800.000 900.000 1000.00
--
Column 6
0.00000 0.00000 0.00000 0.00000 1000.00 1100.00

For large, sparse Matrices, the FULL format can be overburdening. A
more space efficient option is the BANDED format illustrated in the next
example.

Example 7-2. Query the KGG Matrix obtaining a BANDED listing.

eSh> MATRIX SELECT * FROM KGG;

Column Major, Compressed, Real, Double Precision, Symmetric
 6 Rows, 6 Columns, Density = 52.0%
--
Column 1, Rows 1 through 2
100.000 200.000
--
Column 2, Rows 1 through 3
200.000 300.000 400.000
--
Column 3, Rows 2 through 4
400.000 500.000 600.000
--
Column 4, Rows 3 through 5
600.000 700.000 800.000
--
Column 5, Rows 4 through 6
800.000 900.000 1000.00
--
Column 6, Rows 5 through 6
1000.00 1100.00

eShell User’s Manual

RETRIEVING DATA FROM NON-RELATIONAL ENTITIES 7-3

Qualifying the Columns or Rows

It is also possible to qualify, or constrain, the column or row selection
with a Matrix WHERE_part of the form:

MATRIX SELECT [format]
select_list
FROM mat_name

[WHERE_part] ;

WHERE_part ⇒ WHERE




 COLUMNS
 ROWS




 IN rorc_list

where the rorc_list is a list of one or more integer row or column
numbers depending on the Orientation of the Matrix entity — it is a row
list for Column-major Matrices and a column list for Row-major Matrices.

Example 7-3. Query the KGG Matrix extracting Term (Row) 2 of col-
umns 1, 2 and 3.

eSh> MATRIX SELECT 2 FROM KGG WHERE COLUMNS IN 1,2,3;

Column Major, Compressed, Real, Double Precision, Symmetric
 6 Rows, 6 Columns, Density = 52.0%
--
Column 1, Selected Row(s)
200.000
--
Column 2, Selected Row(s)
300.000
--
Column 3, Selected Row(s)
400.000

☞
Note that there are no row identification numbers printed. In fact, the
display options may not be specified when the WHERE_part is present.
When the WHERE_part is used, the requested rows are printed using the
FULL format.

See Chapter 12 for a description of the ways in which you can control the
format of the Matrix query.

User’s Manual eShell

7-4 RETRIEVING DATA FROM NON-RELATIONAL ENTITIES

FREEFORM ENTITIES

This section describes the commands that you may use to retrieve data
from Freeform entities. These commands are similar in nature to those
available for querying Matrix entities.

The FREEFORM Select Command

Data can be selected from Freeform entities if they are Schematic. Recall
from Chapter 1 that Schematic Freeform entities are those which have a
single Numeric Type for all records within the entity. The general form of
the Freeform query command is:

FREEFORM SELECT select_list
FROM free_name
[WHERE_part] ;

The select_list allows you to select either all of the Data Values
within a Record of the Freeform, or to select only specific values:

FREEFORM SELECT

select_list
FROM free_name
[WHERE_part]

select_list ⇒




 value_list
 ∗





where value_list is a list of the Data Value sequence numbers that
you wish to print. In the usual manner, all values can be selected by
using the asterisk (*) shorthand notation. free_name is the name of the
Freeform entity that you are querying. The WHERE_part, described in
the next section, allows you to specify additional selection constraints.

Example 7-4. Query the Freeform entity TESTFREE and print the first
and third records.

eSh> FREEFORM SELECT * FROM TESTFREE WHERE RECORDS IN 1,3;

Real Single Precision, 5 Records, 50 Data Values in Longest
--
Record 1, 10 Data Values
1.00000 2.00000 3.00000 4.00000 ...
--
Record 3, 30 Data Values
3.00000 6.00000 9.00000 12.0000 ...

eShell User’s Manual

RETRIEVING DATA FROM NON-RELATIONAL ENTITIES 7-5

Qualifying the Records

It is also possible to qualify, or constrain, the record selection with a
Freeform WHERE_part of the form:

FREEFORM SELECT
select_list
FROM free_name
[WHERE_part]

WHERE_part ⇒ WHERE




RECORD = num
RECORDS IN (record _list)





where the record_list is a list of one or more integer record num-
bers. When selecting a single record, the alternate form which requires
only the single num, may be used.

Example 7-5. Query Freeform TESTFREE selecting Data Values 1, 5, and
10 from Records 2 and 5.

eSh> FREE SELECT 1,5,10 FROM TESTFREE WHERE RECORDS IN 2,5;

Real Single Precision, 5 Records, 50 Data Values in Longest
--
Record 2, 20 Data Values
2.00000 10.0000 20.000
--
Record 5, 50 Data Values
5.00000 25.0000 50.0000

Note that the total length of the Record is always given. See Chapter 12
for a description of the ways in which you can control the format of the
Freeform query.

User’s Manual eShell

7-6 RETRIEVING DATA FROM NON-RELATIONAL ENTITIES

STREAM ENTITIES

This section describes the command that you may use to retrieve data
from Stream entities. This command is very similar to the one for query-
ing Freeform entities.

As with Freeform entities, data can also be selected from Stream entities
if they are Schematic. The general form of the Stream query command is:

STREAM SELECT select_list FROM stream_name ;

where the select_list is the same as that described for the FREEFORM
SELECT, and stream_name is the name of an existing Stream entity.

Example 7-6. Query the Stream entity STRM and print the first three
data values.

eSh> STREAM SELECT 1,2,3 FROM STRM;

Integer, 1000 Data Values
--
 1 2 3

See Chapter 12 for a description of the ways in which you can control the
format of the Stream query.

eShell User’s Manual

RETRIEVING DATA FROM NON-RELATIONAL ENTITIES 7-7

This page is intentionally blank.

User’s Manual eShell

7-8 RETRIEVING DATA FROM NON-RELATIONAL ENTITIES

8. INSERTING DATA INTO ENTITIES

This Chapter describes the eQL commands which are available to insert
new data into eBase entities.

ADDING NEW ENTRIES TO RELATIONS

New data entries can be added to existing Relations with the command:

INSERT INTO [RELATION] rel_name
[(proj_list)]
value_part ;

where rel_name is the name of an existing eBase Relation. The op-
tional proj_list is a list of attributes of rel_name . If only a subset of
the attributes is specified, then the selected attributes are called a Projec-
tion of the Relation. The value_part , which defines the new values to
be inserted into the Relation, may take one of two forms:

INSERT INTO [REL]
rel_name
proj_list
value_part

value_part ⇒




 VALUES (value _list)
 subquery





In the first form, the value_list contains the entry to be inserted into
the Relation. The value_list must be entered in the order of the
attributes as defined in the proj_list . The Numeric Type of each value
must match the attribute type exactly. Attributes of type CHAR must be
enclosed in apostrophes. The following example illustrates the use of this
form of the INSERT command.

eShell User’s Manual

INSERTING DATA INTO ENTITIES 8-1

Example 8-1. Move to Directory TUTOR, make a copy of the GRID Rela-
tion called INS_GRID and insert a new grid point, ID=11 ,
CID=0, and (X,Y,Z)=(5.0,0.0,0.0) into it.

eSh> CD /TUTOR;
eSh> COPY /GEOM/GRID TO INS_GRID;
eSh> INSERT INTO INS_GRID VALUES (11,0,5.0,0.0,0.0);
.... 1 Entry Inserted

If you specify a Projection, then all attributes which are not specified in
the proj_list are given a Null value in the new entry.

☞
If any of the attributes not in the Projection have been defined to be NOT
NULL, then you may not INSERT into the Relation.

Example 8-2. Insert a new grid point, ID=12 , and with X=10.0 into the
INS_GRID Relation and verify the result.

eSh> INSERT INTO INS_GRID (GID,X)
 2> VALUES (12,10.0);
.... 1 Entry Inserted
eSh> SELECT * FROM INS_GRID WHERE GID=12;
 GID CID X Y Z
-------- ----- ---------- ---------- ----------
 12 NULL 10.00000 NULL NULL

The second form of the <value_part> is a subquery. By using the
subquery, selected portions of one Relation may be inserted into an-
other, as shown in the next example.

Example 8-3. Create a new Relation called GRIDY1. This Relation has
the same schema as GRID. Insert all grid points from
INS_GRID with Y-coordinates of 1.0 into the new Rela-
tion.

eSh> CREATE RELATION GRIDY1 LIKE INS_GRID;
.... Relation TESTEB:/TUTOR/GRIDY1 Created
eSh> INSERT INTO GRIDY1
 2> SELECT * FROM INS_GRID
 3> WHERE Y=1.0;
.... 5 Entries Inserted

Note that the attribute names and Numeric Types are those defined in
Chapter 1. The INSERT command requires the WRITE privilege.

User’s Manual eShell

8-2 INSERTING DATA INTO ENTITIES

ADDING NEW COLUMNS OR ROWS TO MATRICES

An additional feature of eQL is the capability to insert new columns or
rows into existing Matrix entities. The new column or row is actually
appended to the current entity. That is, the column or row number
inserted is one greater than the last one currently in the Matrix. You
insert columns into a Column-major Matrix, and rows into a Row-ma-
jor Matrix. In both cases, the command to perform this operation is:

INSERT INTO MATRIX
matrix_name
new_value_list;

The new_value_list is composed of one or more terms of the form:

INSERT INTO MATRIX
mat_name

new_value_list
new_value_term ⇒ VALUES AT




 row _id

col _id



 (value_list)

where the new column or row is entered a series of nonzero terms,
value_list , within the new column or row. This is done by specifying
the first nonzero row_id or col_id and following it with the list of data
values. The values are assumed to occupy successive row positions
beginning with row_id , or successive column positions beginning with
col_id . The value_list is a list of Matrix terms whose Numeric
Types are conformable to those defined in the entity schema.

Example 8-4. In Directory TUTOR, make a copy of Matrix entity KGG
named INS_KGG and add a seventh column to it. Recall
that KGG is stored in the Column-major Orientation and
the COMPRESSED Storage Mode. Define the terms of the
new column to be: KGG(2,7) = 25.0 , KGG(5,7) =
30.0 and KGG(6,7) = 40.0 . Verify the result.

eSh> COPY /MODEL/KGG TO INS_KGG;
.... 1 Entity Copied
eSh> INSERT INTO MATRIX INS_KGG
 2> VALUES AT 2 (25.0)
 3> VALUES AT 5 (30.0,40.0);
.... Column Added to TESTEB:/TUTOR/INS_KGG
eSh> MATRIX SELECT (FULL) * FROM INS_KGG
 2> WHERE COLUMNS IN 7;
.... Warning, Matrix Shape may no longer be correct!
Column Major, Compressed, Real Double Precision, Symmetric
 6 Rows, 7 Columns, Density = 52.0%
--
Column 7
 0.0000 25.0000 0.0000 0.0000 30.0000 40.0000

The WRITE privilege is required to INSERT new data into Matrix enti-
ties.

eShell User’s Manual

INSERTING DATA INTO ENTITIES 8-3

☞
When you INSERT into a Matrix entity, the topological Shape may be
changed. You must use the SET MATRIX SHAPE command to make the
Shape consistant with the data in the entity. This is only important if the
Matrices will be used with eBase:matlib.

ADDING NEW RECORDS TO FREEFORM ENTITIES

You may also insert a new Record into a Schematic Freeform entity with
the command:

INSERT INTO FREEFORM free_name VALUES (value_list) ;

The value_list is a list of Data Values whose Numeric Types are
conformable to those defined in the entity schema.

Example 8-5. In Directory TUTOR, make a copy of Freeform entity
TESTFREE named INS_FREE, add a sixth Record to it and
verify the result:

eSh> COPY /MODEL/TESTFREE TO INS_FREE;
.... 1 Entity Copied
eSh> INSERT INTO FREEFORM INS_FREE
 2> VALUES (100.,200.,300.,400.,500.);
.... Record Added to TESTEB:/TUTOR/INS_FREE
eSh> FREEFORM SELECT * FROM INS_FREE WHERE RECORDS IN 6;

Real Single Precision, 6 Records, 50 Data Values in Longest
--
Record 6, 5 Data Values
100.0 200.0 300.0 400.0 500.0

The WRITE privilege is also required to INSERT new data into Freeform
entities.

☞
When you INSERT into a Freeform entity with n Records, the new
Record automatically becomes Record n+1.

User’s Manual eShell

8-4 INSERTING DATA INTO ENTITIES

ADDING DATA VALUES TO STREAM ENTITIES

Additional Data Values beyond those existing in a Schematic Stream
entity may be inserted using command:

INSERT INTO STREAM stream_name VALUES (value_list) ;

The value_list will be inserted into the Freeform entity
stream_name beginning at the next available position, that is, one posi-
tion beyond the last Data Value in the entity. As with Schematic Freeform
entities, all of the Data Values must be conformable to the correct Nu-
meric Type for Schematic Stream entities.

Example 8-6. Copy the Stream entity STRM to INS_STRM, add 3 new
Data Values and verify the result:

eSh> COPY /MODEL/STRM TO INS_STRM;
.... 1 Entity Copied
eSh> INSERT INTO STREAM INS_STRM
 2> VALUES (1001,1002,1003);
.... 3 Data Values Added to TESTEB:/TUTOR/INS_STRM
eSh> STREAM SELECT 1001,1002,1003 FROM INS_STRM;

Integer, 1003 Data Values
--
 1001 1002 1003

The WRITE privilege is also required to INSERT new data into Stream
entities.

✔
Clean-up your /TUTOR/ Directory to restore your TESTEB: database to
its initial state.

eShell User’s Manual

INSERTING DATA INTO ENTITIES 8-5

This page is intentionally blank.

User’s Manual eShell

8-6 INSERTING DATA INTO ENTITIES

9. UPDATING ENTITY DATA

In this Chapter, commands which allow data in Relational, Matrix, Free-
form and Stream entities to be updated are described. Also, the com-
mand for altering the schema of an existing Relation is given.

UPDATING RELATIONAL ENTITIES

It is possible for you to update any fields in a selected Relational entries
with the command:

UPDATE [RELATION] rel_name
SET value_list
[WHERE_part];

The value_list is a list of value_term s separated by commas, which
are used to define values for one or more attributes in the entity. There
are two basic forms of this list:

UPDATE [REL] rel_name

SET value_list
WHERE-part

value _term ⇒




 att _name = value
 att _name = expression





where the att_name is an attribute name in the selected Relation,
rel_name . The attribute can be assigned a value directly, or it may be
computed by an arithmetic expression . The expression may contain
any of the functions described in Chapter 4, and it may use any of the
attributes contained in rel_name .

eShell User’s Manual

UPDATING ENTITY DATA 9-1

The optional WHERE_part, which has the standard form described in
Chapter 4, can be used to update a specific range of selected data entries.
If it is not used, then all of the entries in the entity are updated as speci-
fied.

Example 9-1. In Directory TUTOR, copy the Relation QUAD4 to
NEW_QUAD4, change the property identification number
of all element to the value 1, and verify the change.

eSh> COPY /GEOM/QUAD4 TO NEW_QUAD4;
.... 1 Entity Copied
eSh> UP NEW_QUAD4 SET PID=1;
.... 10 Entries Updated
eSh> SELECT * FROM NEW_QUAD4;
 EID PID G1 G2 G3 G4
-------- -------- -------- -------- -------- --------
 1 1 1 2 7 6
 2 1 2 3 8 7
 3 1 3 4 9 8
 4 1 4 5 10 9

.... 4 Entries Selected

The modification of more than one attribute is accomplished simply by
listing all of the new values desired in the UPDATE command as illus-
trated in the next example.

Example 9-2. Copy the Relation PSHELL to NEW_PSHELL and change
the material property identification number and the thick-
ness to 501 and 0.25 , respectively. Verify the results.

eSh> COPY /MODEL/PSHELL TO NEW_PSHELL;
.... 1 Entity Copied
eSh> UPDATE PSHELL SET MID=501,T=0.25;
.... 3 Entries Updated
eSh> SELECT * FROM PSHELL;

 PID MID T
-------- -------- ------------
 1 501 2.50000E-01
 2 501 2.50000E-01
 3 501 2.50000E-01

.... 3 Entries Selected

It is also possible to update a set of entries simultaneously by using a
WHERE_part that contains the appropriate collection of conditions.

Example 9-3. Make a copy of Relation GRID called NEW_GRID, and
translate the grid point having an X-coordinate of 2.0 and
a Y-coordinate of 1.0 to the location having Y=2.0 .

eSh> COPY /GEOM/GRID TO NEW_GRID;
.... 1 Entity Copied
eSh> UPDATE NEW_GRID SET Y=Y+1.0 WHERE X=2.0 AND Y=1.0;

.... 1 Entry Updated

User’s Manual eShell

9-2 UPDATING ENTITY DATA

Finally, subqueries may be used in the UPDATE command to determine
the range of entries to be updated, as shown in the next example.

Example 9-4. Change the property identification number of all
NEW_QUAD4 elements having normal-y stresses greater
than 2.0E+6 in Subcase 1 to PID=3 .

eSh> UPDATE NEW_QUAD4 SET PID=3
 2> WHERE EID IN
 3> (SELECT EID FROM /RESULT/Q4STR[1]
 4> WHERE SIGY > 2.0E+6);

.... 2 Entries Updated
eSh> SELECT EID,PID FROM NEW_QUAD4 WHERE PID=3;

 EID PID
-------- --------
 2 3
 3 3

.... 2 Entries Selected

In order to UPDATE a Relation, it is necessary to have the WRITE
privilege for the database.

UPDATING MATRIX ENTITIES

It is also possible to selectively update columns or rows of Matrix entities
subject to specific restrictions. To do this, the command:

UPDATE MATRIX matrix_name value_list

WHERE




 ROW
 COLUMN




 = rorc_id ;

is used. The matrix_name must be the name of an existing Matrix
entity. The new data values are given in the value_list which is
composed of a list ofvalue_term s:

UPDATE MATRIX mat_name
SET rorc_id TO

value_list
value_term ⇒ SET VALUES AT TERM corr_id TO (values)

The corr_id is an integer value indicating the starting column or row
position of the numbers found in the list of values . Special rules, de-
scribed in the next section, must be obeyed when specifying the
corr_id and values for Matrix entities which use the COMPRESSed
Storage Mode. The next example shows how a Matrix column may be
updated.

Finally, the rorc_id is the column or row identification number that
will be updated. For the Column-major Orientation, it indicates a col-
umn, and for the Row-major Orientation, a row.

eShell User’s Manual

UPDATING ENTITY DATA 9-3

Example 9-5. Copy Matrix entity KGG to NEW_KGG, and change
NEW_KGG(3,3) to the value 20.0 . Query the original
value and verify the change.

eSh> COPY /MODEL/KGG TO NEW_KGG;
.... 1 Entity Copied
eSh> MATRIX SELECT 3 FROM NEW_KGG WHERE COLUMNS IN 3;

Column Major, Compressed, Real Double Precision, Symmetric
 6 Rows, 6 Columns, Density = 52.0%
--
Column 3, Selected Row(s)
500.000

eSh> UPDATE MATRIX NEW_KGG
 2> SET VALUES AT TERM 3 TO (20.0) WHERE COLUMN = 3;

.... 1 Column Updated in TESTEB:/TUTOR/NEW_KGG

eSh> MATRIX SELECT 3 FROM NEW_KGG WHERE COL IN 3;
Column Major, Compressed, Real Double Precision, Symmetric
 6 Rows, 6 Columns, Density = 52.0%
--
Column 3, Selected Row(s)
 20.0000

RESTRICTIONS ON MATRIX UPDATING

If a Matrix entity has been created with the COMPRESSed Storage Mode,
then only terms that were initially placed in the Matrix can be updated.
For the UNCOMPRESSed Storage Mode this is not a problem because all of
the terms exist by definition. An attempt to update data in the former
case will lead to an error condition as shown in the next example.

Example 9-6. Set NEW_KGG(1,5) to 5.0

eSh> UPDATE MATRIX NEW_KGG
 2> SET VALUES AT TERM 1 TO (5.0) WHERE COLUMN = 5;
ERR> Cannot Update Matrix NEW_KGG at Column/Row 5 Row/Column 1

The WRITE privilege is also required to UPDATE a Matrix entity.

UPDATING FREEFORM ENTITIES

Freeform entities may be updated in a limited manner with the com-
mand:

UPDATE FREEFORM free_name
SET position TO value_list
WHERE RECORD = rec_id ;

where the free_name is the name of an existing Freeform entity. The
value_list is a list of one or more values that will replace all of the
Data Items in rec_id beginning with position . Finally, rec_id is the
Record that you wish to update.

User’s Manual eShell

9-4 UPDATING ENTITY DATA

Example 9-7. Copy Freeform entity TESTFREE to UP_FREE and change
the second and third Data Values in the first Record to the
values 22.2 and 33.3 , respectively, and verify the
change.

eSh> COPY /MODEL/TESTFREE TO UP_FREE;
.... 1 Entity Copied
eSh> UP FREE UP_FREE SET 2 TO 22.2,33.3 WHERE RECORD = 1;
.... Record Updated in TESTEB:/TUTOR/UP_FREE
eSh> FREE SELECT 1,2,3,4,5 FROM UP_FREE WHERE RECORD = 1;
Real Single Precision, 5 Records, 50 Data Values in Longest
--
Record 1, 10 Data Values
1.00000 22.2000 33.3000 4.00000 5.00000

The entity must be a Schematic Freeform, and the value_list Nu-
meric Types must be the same as that defined for the entity. The UPDATE
FREEFORM command requires the WRITE privilege.

☞
You may not extend the length of the Freeform Record when you
perform the UPDATE FREE operation.

UPDATING STREAM DATA

It is also possible for you to update any existing Data Item in a selected
Stream entity with the command:

UPDATE STREAM stream_name
SET position TO value_list ;

where the stream_name is the name of an existing Stream entity and
position is the location of the first Data Item to be changed. The
value_list is a list of one or more values that will replace all of the
Data Items beginning with position .

Example 9-8. Copy Stream entity STRM to UP_STRM and change Data
Values 110 through 115 to those indicated and verify the
change.

eSh> COPY /MODEL/STRM TO UP_STRM;
.... 1 Entity Copied
eSh> UP STREAM UP_STRM SET 110 TO 1,1,1,1,1,1;
.... 5 Data Values Updated in TESTEB:/TUTOR/UP_STRM
eSh> STREAM SELECT 110,111,112,113,114,115 FROM UP_STRM;

1000 Integer Data Values
--
 1 1 1 1 1 1

The UPDATE STREAM command requires the WRITE privilege.

☞
You may not extend the length of the Stream entity when you perform
the UPDATE STREAM operation. To do this, you use the INSERT INTO
STREAM command, also described in Chapter 8.

eShell User’s Manual

UPDATING ENTITY DATA 9-5

CHANGING THE SCHEMA OF A RELATION

It is also possible to change the schema of an existing Relation by adding
a new attribute to it. This is done with the command:

ALTER rel_name ADD (new_schema_list);

where the new_schema_list is composed of schema_term s, already
defined in Chapter 3, for the new attributes being added to rel_name .

 Example 9-9. Using the Relation NEW_GRID created previously, add a
new attribute to this entity which will be used to contain
the distance of the grid point from the origin, DIST , as a
real, single precision value. Verify that the attribute was
added.

eSh> ALTER NEW_GRID ADD (DIST RSP);
.... Attribute DIST Added to NEW_GRID
eSh> DESCRIBE NEW_GRID;

.... Attribute Type Len Null Descriptor

.... --------- ---- ----- ---- ----------

.... GID INT 1

.... CID INT 1

.... X RSP 1

.... Y RSP 1

.... Z RSP 1

.... DIST RSP 1

.... Current Contents 10 Entries

It is necessary to have ADMINISTRATION privilege in order to ALTER
the schema of a Relation.

☞
Note that this operation can be quite expensive because a new Relation is
created and the contents of the original are copied to the new one with
the specified attributes added.

The fields for all new attributes are defined as NULL following the opera-
tion. In order to add data to these fields, the UPDATE or INSERT com-
mands must be used.

User’s Manual eShell

9-6 UPDATING ENTITY DATA

 Example 9-10. Query the Relation NEW_GRID for values of GID less
than 4. Then, update the DIST field with the distance
value and perform the same query on the result.

eSh> SELECT * FROM NEW_GRID
 2> WHERE GID < 4;
 GID CID X Y Z DIST
-------- -------- -------- -------- -------- --------
 1 0 0.00000 1.00000 0.00000 NULL
 2 0 1.00000 1.00000 0.00000 NULL
 3 0 2.00000 1.00000 0.00000 NULL

eSh> UPDATE NEW_GRID
 2> SET DIST = SQRT(X**2+Y**2+Z**2);
.... 10 Entries Updated
eSh> SELECT * FROM TO NEW_GRID
 2> WHERE GID < 4;
 GID CID X Y Z DIST
-------- -------- -------- -------- -------- --------
 1 0 0.00000 1.00000 0.00000 1.00000
 2 0 1.00000 1.00000 0.00000 1.41421
 3 0 2.00000 1.00000 0.00000 2.23607

✔
Clean-up your /TUTOR/ Directory to restore your TESTEB: database to
its initial state.

eShell User’s Manual

UPDATING ENTITY DATA 9-7

This page is intentionally blank.

User’s Manual eShell

9-8 UPDATING ENTITY DATA

10. REMOVING DATA FROM eBase

This Chapter describes the eQL commands that are used to remove enti-
ties and their data from the eBase database. Complete entities, including
both their schema and contents, may be purged. Alternately, all, or se-
lected, data entries may be deleted without removing the entity itself.

REMOVING AN ENTITY

Any database entity may be removed from eBase with the command:

PURGE











REL____ATION
MAT____RIX

FREE_____FORM
STR____EAM










 entity_name [ALLVER];

where the entity_name must refer to an existing entity of the selected
class. This command removes the Data Component of the entity and then
removes the entity Name and Schema from the database. The ALLVER
option allows you to PURGE all Subscripted versions of the entity.

Because this is a potentially dangerous command, you are asked to con-
firm the PURGE activity. This is true for all of the commands described in
this Chapter.

eShell User’s Manual

REMOVING DATA FROM eBase 10-1

REMOVING ENTRIES FROM RELATIONS

eQL allows you to selectively remove entries from eBase Relations. This
is done with the command:

DELETE FROM [RELATION] rel_name [WHERE_part] ;

where rel_name is the name of an existing Relation. The entries to be
deleted can be selected with a WHERE_part in the usual manner. The
WHERE_part is optional and if it is not specified, then all data entries are
deleted from the Relation.

Example 10-1. In Directory TUTOR, make a copy of Relation GRID and
delete entries which have Y-coordinates equal to 0.0 .
and verify the results.

eSh> CD /TUTOR;
eSh> COPY /GEOM/GRID TO DEL_GRID;
.... 1 Entity Copied
eSh> DELETE FROM DEL_GRID
 2> WHERE Y = 0.0;
eSh> Enter YES to delete 5 Entries, leaving 5 Entries: YES
.... 5 Entries Deleted from TESTEB:/TUTOR/DEL_GRID
eSh> SEL * FROM DEL_GRID;
 GID CID X Y Z
-------- -------- ---------- ---------- ----------
 1 0 0.0 1.0 0.0
 2 0 1.0 1.0 0.0
 3 0 2.0 1.0 0.0
 4 0 3.0 1.0 0.0
 5 0 4.0 1.0 0.0

.... 5 Entries Selected

It is equally permissable for subqueries to be used in the WHERE_part as
shown in the next example.

Example 10-2. Make a copy of Relation PSHELL and remove the entry
which has the same property identification number, PID ,
as element identification number 2 in Relation QUAD4
and verify the result.

eSh> COPY /MODEL/PSHELL TO DEL_PSHELL;
.... 1 Entity Copied
eSh> DEL FROM DEL_PSHELL
 2> WHERE PID = (SELECT PID FROM /GEOM/QUAD4
 3> WHERE EID = 2);
eSh> Enter YES to delete 1 Entry, leaving 2 Entries: YES
.... 1 Entry Deleted from TESTEB:/TUTOR/DEL_PSHELL
eSh> SELECT * FROM DEL_PSHELL;
 PID MID T
-------- -------- ------------
 1 101 1.00000E-01
 3 301 3.00000E-01

.... 2 Entries Selected

Note that Relation /GEOM/QUAD4 in the Subquery is fully qualified
because the Working Directory is /TUTOR.

User’s Manual eShell

10-2 REMOVING DATA FROM eBase

REMOVING COLUMNS OR ROWS FROM MATRICES

It is also possible to remove selected columns or rows from Matrix enti-
ties, depending on the Orientation of the Matrix. Recalling the descrip-
tion of Matrix Orientation presented in Chapter 1, for matrices which
are stored in the Column-major Orientation, the number of rows is
fixed while its number of columns is dynamic. Similarly, for matrices
which are stored in the Row-major form Orientation, the number of
columns is fixed while its number of rows is dynamic. In the former
case, row deletion is not allowed, and in the latter case, column dele-
tion is not allowed. To delete one or more selected columns or rows
from a Matrix, the command:

DELETE FROM MATRIX mat_name (list);

is used where the mat_name is the name of an existing Matrix entity and
the list identifies the columns or rows to be deleted. eShell automat-
ically determines the Orientation and deletes the data accordingly.

Example 10-3. Delete the odd numbered columns from DEL_KGG, a
copy of Matrix KGG. Verify the results by querying the
Matrix.

eSh> COPY /MODEL/KGG TO DEL_KGG;
.... 1 Entity Copied
eSh> DELETE FROM MATRIX DEL_KGG (1,3,5);
eSh> Enter YES to delete 3 Columns, leaving 3 Columns: YES
.... 3 Columns Deleted from TESTEB:/TUTOR/DEL_KGG

eSh> MATRIX SELECT (BANDED) * FROM DEL_KGG;
Column Major, Compressed, Real Double Precision, Symmetric
 6 Rows, 3 Columns, Density = 44.4%
--
Column 1, Rows 1 through 3
 2.00000E+02 3.00000E+02 4.00000E+02
--
Column 2, Rows 3 through 5
 6.00000E+02 7.00000E+02 8.00000E+02
--
Column 3, Rows 5 through 6
 1.00000E+03 1.10000E+03

If you wish to create a Matrix partition, which can be an equivalent
operation to deleting the rows of a Matrix, then the EXTRACT MATRIX
command can be used. When you DELETE from a Matrix entity, the
topological Shape may be changed. For example, in Example 10-3, the
Symmetric Shape was changed to Rectangular after the column deletion.
You must use the SET MATRIX SHAPE command to make the Shape
consistent with the data in the entity. This is only important if the Matri-
ces will be used with eBase:matlib.

☞
When you DELETE one or more Columns or Rows from a Matrix entity,
all subsequent Columns or Rows are renumbered. Therefore, you cannot
reference them by their original number.

eShell User’s Manual

REMOVING DATA FROM eBase 10-3

REMOVING RECORDS FROM FREEFORM ENTITIES

Finally, you may remove an entire Record from a Freeform entity with
the command:

DELETE FROM FREEFORM free_name (list);

where the free_name is the name of an existing Freeform entity and the
list identifies the Records to be deleted.

Example 10-4. Delete the odd numbered Records from DEL_FREE, a
copy of Freeform FREE and confirm the result using the
DESCRIBE command.

eSh> COPY /MODEL/TESTFREE TO DEL_FREE;
.... 1 Entity Copied
eSh> DELETE FROM FREE DEL_FREE (1,3,5);
eSh> Enter YES to delete 3 Records, leaving 2 Records: YES
.... 3 Records Deleted from TESTEB:/TUTOR/DEL_FREE

eSh> DESCRIBE DEL_FREE;
.... Freeform TESTEB:/TUTOR/DEL_FREE
.... 2 Records, Longest Record is 40

☞
When you DELETE one or more Records from a Freeform entity, all
Records are renumbered. Therefore, you cannot reference Records by
their original number.

✔
Clean-up your /TUTOR/ Directory to restore your TESTEB: database to
its initial state.

User’s Manual eShell

10-4 REMOVING DATA FROM eBase

11. FILE ENVIRONMENT COMMANDS

eShell provides a class of commands that can modify the file environ-
ment under which the program performs certain operations. These com-
mands allow the user to modify the source of eQL commands, to define a
file upon which eQL commands may be written for archival purposes, or
to create text files that may be used directly by other programs. This
section describes these features and the manner in which they are used.

THE SCRIPT FILE

A Script File is a text file that resides on the eShell host computer. It may
contain a sequence of many eQL commands. When using eShell, the
command:

[START] file_name [param_list];

requests that eShell begin reading and executing commands from the
script file, rather than from the terminal. The file_name , which must be
enclosed in tics if it does not follow the Basic Naming Conventions de-
scribed in Chapter 1, may be any valid file name on the eShell host
computer.

eQL Script Files may include parameters that you may change when you
START them by specifying a param_list . This is done by using a substi-
tution variable in the command. The form of such a variable is:

&1

You may use from one to nine parameters, i.e. &1 through &9, in a com-
mand file. When you invoke the Script File, you then include the actual
values of the parameters with the START command, as shown in the following
example.

eShell User’s Manual

FILE ENVIRONMENT COMMANDS 11-1

Example 11-1. Invoke the Script File named VARGRID with parameters
5.0 and 2.3 :

eSh> START VARGRID 5.0 2.3;

Script Files allow you to save and recall frequently used eQL command
sequences. For example, the developers of eShell used this feature to save
test cases which could be rerun as often as necessary.

Only one Script File may be active at a given instant. If the SET SCRIPT
command is issued while a Script File is active, the active file is sus-
pended and the new one is opened. Control returns to the previous
Script File when the current one is exhausted. Also note that eQL com-
mand editing cannot be performed on commands which enter eShell
from the Script File because the user is not in control of the terminal.

You may include variables within the commands in your Script File by
using the symbol substitution protocol discussed in Chapter 1. Namely,
commands may include symbols of the form:

&symbol_name

You may then use the DEFINE command to give these variables a value
prior to invoking the Script File.

THE ARCHIVE FILE

An Archive File is a text file that contains an historical record of the
commands entered during an eShell interactive session. Specifically, it is
a copy of commands that have executed successfully. If a command has
been edited, only the final form of the command is archived. Those
which contained user errors are not put on the archive file. The principal
purpose of this file is to use it during a subsequent eShell session as a
script file.

To define an Archive File, the command:

SET ARCHIVE TO ’ file_name ’;

is used. The Archive File can be enabled or disabled with the command:

ARCHIVE




 ON
 OFF




 ;

While enabled (ON), all successful eQL commands are routed to the Ar-
chive File. When disabled (OFF), commands are no longer written. As in
the case of the Script File, only one archive file may be open. If a new SET
ARCHIVE request is made, then the currently active file is closed and the
new one is opened. Note that if the command SET SCRIPT is entered
interactively, then it will not be written to the Archive File. On the other
hand, you may enter the SCRIPT OFF command while the Archive File
is enabled. This allows the termination of the sequence of eQL commands

User’s Manual eShell

11-2 FILE ENVIRONMENT COMMANDS

previously archived and facilitates the use of the archive file as a Script
File in a subsequent eShell session.

THE REPORT FILE

The purpose of the Report File is to contain all query and report output
for which you wish to obtain a permanent record. The Report File is
specified with the command:

SET REPORT TO ’ file_name ’;

It is the enabled or disabled with the command:

REPORT




 ON
 OFF




 ;

This file may be printed in the normal manner by using the appropriate
operating system request after the eShell session is completed. As in the
case of the other files, only one Report File may be opened. The request
for a new file will result in the previous one being closed.

THE INTERFACE FILE

There are often times when you may wish to extract data from the eBase
database that will be further processed by some other software. An Inter-
face File is provided to support this need. This file is defined with the
command:

SET INTERFACE TO ’ file_name ’;

As in the case of Report and Archive Files, the interface file may be
enabled and disabled with the command:

INTERFACE




 ON
 OFF




 ;

When the Interface File is enabled, all eQL results will be written to the
file in a user-defined format. A format is defined by the command:

INTERFACE FORMAT ’ format_specifier ’;

where the format_specifier is a Fortran FORMAT statement en-
closed in apostrophes. All Fortran rules are in effect, including the need
to indicate apostrophes, or tics, within the format by two consecutive tics.

Example 11-2. Create a text file containing the grid point identification
numbers and coordinates in the indicated format.

eSh> SET INTERFACE TO ’MYINPUT.DAT’;
eSh> INTERFACE FORMAT ’(1X,’’GID = ’’,I5,3E15.5)’;
eSh> SELECT GID,X,Y,Z FROM GRID;
eSh> INTERFACE OFF;

eShell User’s Manual

FILE ENVIRONMENT COMMANDS 11-3

The file is positioned to the end-of-data upon completion of this opera-
tion. If the file is enabled again, subsequent data will be appended to the
end of the file. Only one Interface File may be used at a given time. If
another SET INTERFACE command is encountered, the current open file
will be closed and the new one opened.

☞
Note that no format checking is done by eShell. It is your responsibility
to insure that the format statement specified is compatible with the
output data items.

The interface file format for Matrix data is fixed. If you need to export
Matrix entities, you can read them in a program that you write which
uses a special Fortran utility which is part of the eBase:applib. Contact
your eBase Administrator to obtain this routine. The actual internal file
format is documented in the Installation Guide and System Support
Manual.

EXPORTING AND IMPORTING DATABASES

You may move an eBase database from one computer to another as
shown in Figure 11-1. Given an eBase database residing on host com-
puter A, you may create an Export File in one of two formats described
later in this section. This file is then transferred, using the network proto-
cols available at your facility, to host computer B. You then use eShell on
this computer to load the resulting Import File into a new eBase database
residing on computer B.

HOST
COMPUTER

A

HOST
COMPUTER

B

eShell
on
A

eBase
on
A

eShell
on
B

eBase
on
B

EXPORT
FILE

IMPORT
FILE➠ ➠ ➠ ➠ ➠

NETWORK TRANSFER

Figure 11-1. Moving a Database To a New Computer

User’s Manual eShell

11-4 FILE ENVIRONMENT COMMANDS

The commands used for this purpose are:

EXPORT [path]




 BINARY
 FORMATTED




 file _name ;

and

IMPORT file _name [path] ;

The optional path descriptor indicates that a recursive descent of all
subdirectories, from path , and their contents will be EXPORTed. In the
case of IMPORT, all of the directory structure previously EXPORTed will
be restored treating the specified path as the Root Directory.

There are two basic types of file. The first is BINARY, which represents
data using the IEEE-754(1985) Binary Floating-Point Arithmetic Standard
to represent the data contents of the eBase. Export Files of this type
require the minimum amount of disk space and thus require the shortest
transfer time across your network. The second type of file is the FORMAT-
TED file. When you use this option, the resulting file shows all eBase data
items as clear text. This option results in much larger Export Files. The
file_name that you specify depends on the naming conventions of the
two computers that are used for the transfer of the database. Note that
IMPORT automatically detects the file type when restoring the database.

☞

When you use the BINARY file option, it is possible that certain data
may lose precision when moving from one type of computer to another.
Check with eBase Customer Support at UAI when using DEC
VAX(VMS) or CRAY computers because the computers do not currently
use the IEEE standard.

eShell User’s Manual

FILE ENVIRONMENT COMMANDS 11-5

This page is intentionally blank.

User’s Manual eShell

11-6 FILE ENVIRONMENT COMMANDS

12. REPORT GENERATION

One of the major purposes of eShell is to provide capability for the post-
processing of engineering analysis data and results. The previous Chap-
ters of this manual have described many methods for manipulating
eBase entities. This section presents the methods available for generating
customized reports suitable for inclusion in design reports.

FORMATTING COMMANDS

Formatting commands allow you to specify customized labels and for-
mats for reports. Specific features include:

❐ Column Labels and Formats

❐ Page Titles

❐ Grouping Commands

❐ Page Control Commands

The sections below give detailed definitions of these commands and ex-
amples of their use.

COLUMN LABELS AND FORMATS

As illustrated previously in this manual, selected data are printed using
the names of the attributes within the schema as column titles and the
data values are printed in the default formats defined within eShell.
However, the results of any Relational query can be presented using
descriptive headings and formats selected by the user. First, consider
the standard query results.

eShell User’s Manual

REPORT GENERATION 12-1

Example 12-1. Query the QUAD4 Relation.

eSh> SELECT * FROM QUAD4;

 EID PID G1 G2 G3 G4
-------- -------- -------- -------- -------- --------
 1 1 1 2 7 6
 2 2 2 3 8 7
 3 1 3 4 9 8
 4 2 4 5 10 9

.... 4 Entries Selected

Any or all columns of the query results may be titled by using the com-
mand:

SET COLUMN attribute_name column_option s ;

where column_options are a list of one or more options describing the
manner in which the column will be printed. These options include:

column_option ⇒ [heading_info]
[format_info]
[justification]
[TEMP] [CLEAR]

Each of these options will be described in detail below. When you change
the title of an attribute, this change remains in effect for your entire eShell
session, or until you issue the SET COLUMN command with the CLEAR
option. If you want a title to remain in effect for only the next query, you
may specify the TEMP option when you issue the SET COLUMN com-
mand.

The heading_info is a string defining the title that you wish placed on
the column. Its format is:

column_option ⇒
[heading_info]
[format_info]
[justification]
[TEMP] [CLEAR]

heading_info ⇒ LABEL




’ string ’
’ multi _line _title ’





where a string may be any sequence of characters with or without
embedded blanks. A multi_line_title is specified by separating the
lines with the slash (/) character as will be shown in the next example.
Should the slash character itself be wanted in the label, then two consecu-
tive slashes (//) are entered. The optional justification parameter speci-
fies the manner in which the title will be justified over the column.

User’s Manual eShell

12-2 REPORT GENERATION

It may be selected as:

column_option ⇒
[heading_info]
[format_info]

[justification]
[TEMP] [CLEAR]

justification ⇒




LEFT
RIGHT

CENTER





If not given, the default justification is used, i.e. LEFT for string data and
RIGHT for numeric data.

Example 12-2. Change the headings for the QUAD4 query so that EID
becomes "ELEMENT/ID NUMBER" and PID becomes
"PSHELL ID ".

eSh> SET COLUMN EID LABEL ’ELEMENT/ID NUMBER’;
.... Permanent Report Column EID Created
eSh> SET COL PID LABEL ’PSHELL ID’;
.... Permanent Report Column PID Created
eSh> SELECT * FROM QUAD4;

 ELEMENT
ID NUMBER PSHELL ID G1 G2 G3 G4
--------- --------- -------- -------- -------- --------
 1 1 1 2 7 6
 2 2 2 3 8 7
 3 1 3 4 9 8
 4 2 4 5 10 9

.... 4 Entries Selected

The format_info specifies the exact format that you wish to use in
printing the column. Its form is a subset of Fortran and may be:

column_option ⇒
[heading_info]

[format_info]
[justification]
[TEMP] [CLEAR]

format_info ⇒ FORMAT ’













 I w
 Fw. d
 Ew. d
 Dw. d

 Aw
 Gw. d













 ’

where w represents the total field width, in characters, and d the number
of decimal places. The user may also control the character used to under-
line attribute names. This is done using the command:

SET UNDERLINE TO ’ underline_character ’;

where the underline_character is a single legal character. Note that
this character must be enclosed in apostrophes. If a blank is used for the
underline_character , then a space will be skipped between the at-
tributes names and their values. Consider the following example.

eShell User’s Manual

REPORT GENERATION 12-3

Example 12-3. Query the Relation GRID for all grid points with X-coor-
dinates of 4.0. Use a format of F9.5 for the X- and
Y-coordinates, label the GID field "GRID ID "and use an
equal sign (=) to underline attribute names.

eSh> SET COLUMN GID LABEL ’GRID ID’;
.... Permanent Report Column GID Created
eSh> SET COLUMN X FORMAT ’F9.5’;
.... Permanent Report Column X Created
eSh> SET COLUMN Y FORMAT ’F9.5’;
.... Permanent Report Column Y Created
eSh> SET UNDERLINE TO ’=’;
eSh> SELECT * FROM GRID WHERE X=4.0;

GRID ID CID X Y Z
======= ======== ========= ========= ============
 5 0 4.00000 1.00000 0.00000E+00
 10 0 4.00000 0.0 0.00000E+00

PAGE TITLES

eQL provides you with commands to place titles at either the top of each
page or screen, the bottom, or both. The commands used to do this are:

SET HEADER TO ’ header_line ’
[justification]
[DATE] [PAGE];

SET FOOTER TO ’ footer_line ’
[justification]
[DATE] [PAGE];

Both header_line and footer_line may contain blanks. Multiple
lines are denoted by the slash (/) as in column titles. The optional DATE
and PAGE parameters request that the date and page number be placed
on each page. The justification parameters and defaults are the
same as for the SET COLUMN command. The effects of justification and
titling depend upon certain page control information that are discussed
later in this Chapter.

Example 12-4. Recreate the query of example 12-3 placing appropriate
titles on the output report.

eSh> SET HEADER TO ’GRID POINTS ALONG STATION X=4.0’ PAGE;
eSh> SET FOOTER TO ’TESTEB SAMPLE’ CENTER DATE;
eSh> SELECT * FROM GRID WHERE X=4.0;

 GRID POINTS ALONG STATION X=4.0 PAGE 1

GRID ID CID X Y Z
======= ======== ========= ========= ============
 5 0 4.00000 1.00000 0.00000E+00
 10 0 4.00000 0.0 0.00000E+00

 dd-mmm-yyyy TESTEB SAMPLE

.... 2 Entries Selected

User’s Manual eShell

12-4 REPORT GENERATION

GROUPING COMMANDS

eQL provides a special command that allows the legibility of reports to
be enhanced by spacing between related groups of data. This command
is:

SET BREAK ON attribute_name [SKIP n] [PAGE] ;

where the attribute_name is one which appears in the next query
command. The optional SKIP parameter requests that n lines be skipped
when a new value of attribute_name is encountered. PAGE requests
that the report begin a new page when the attribute_name changes
value. Note that the SET BREAK ON command must be made prior to a
query that contains any GROUP_part or SORT_part that references the
same attribute_name .

Example 12-5. Query the QUAD4 Relation, selecting all attributes, sort-
ing them by the property identification number, PID ,
and skipping a line between each property type.

eSh> SET BREAK ON PID SKIP 1;
eSh> SELECT * FROM QUAD4 SORT BY PID;

 EID PID G1 G2 G3 G4
-------- -------- -------- -------- -------- --------
 1 1 1 2 7 6
 3 1 3 4 9 8

 2 2 2 3 8 7
 4 2 4 5 10 9

.... 4 Entries Selected

PAGE CONTROL COMMANDS

Certain page control information may be controlled with eQL com-
mands. This information allows different print characteristics to be de-
fined. The first such command is:

SET LINEWIDTH TO n ;

which defines the width, in characters, of the display area. If not speci-
fied, LINEWIDTH is 80. The command:

SET PAGELENGTH TO n ;

controls the number of lines in the display area. If not specified, this
value is 24. To control the number of spaces between columns of output,
the command:

SET COLSPACE TO n ;

is used. The default spacing is two characters.

eShell User’s Manual

REPORT GENERATION 12-5

The final commands are:

SET INTWIDTH TO n ;

SET FLOATWIDTH TO n ;

which set the default field width for integer and floating point numeric
fields, respectively. The default value depends on the data type of the
attribute:

I8 for integer values (INT)

1P,E12.5 for floating point values (RSP,RDP,CSP and CDP)

☞ A FLOATWIDTH cannot be less than 8 characters.

Character attributes are printed with a field width equal to the length
they were defined to have when created. For array attributes, all ele-
ments are printed following the rules above. These defaults can be modi-
fied in two ways. The first is by the specification of a SET COLUMN
command. The second is an automatic adjustment by eShell to accommo-
date column title information. In the absence of a SET COLUMN, the
minimum width printed is that which allows the full title to be displayed.
This was illustrated in Examples 12-2 and 12-3.

Note that any or all page control commands may be listed in a single SET
command by listing them separated by commas.

User’s Manual eShell

12-6 REPORT GENERATION

13. UTILITY FUNCTIONS

This Chapter describes several utility functions available in eShell that
allow the user to control the tolerance on floating point comparisons and
provide online HELP information and a summary of current environment
variables.

DIRECTORY TREE

The Directory structure of your eBase database can be displayed using
the command:

TREE [path] ;

where path is an optional Path name. The directory structure shown
recursively descends from the path location.

Example 13-1. Move to the Root Directory and display the Directory tree
for TESTEB:

eSh> CD /;
eSh> TREE;
.... TESTEB:/
.... |--- /MODEL
.... |--- /GEOM
.... |--- /RESULTS

eShell User’s Manual

UTLITIES 13-1

TOLERANCE FOR FLOATING POINT COMPARISONS

The eBase numeric data types (RSP, RDP, CSP and CDP) are approximate
in nature so that it is possible for computed values that are in fact identi-
cal to differ in the least significant decimal places. Because eQL allows
comparisons of these numbers it is usually necessary to define a compari-
son tolerance, called δ. Let A be an attribute in a relation with a particular
value, α, and let ρ be an approximate numeric value specified by the user
in a query. Then the relational operators are modified as:

α = ρ if and only if ρ−δ ≤ α ≤ ρ+δ

α ≠ ρ if and only if ρ−δ > α or α > ρ+δ

α > ρ if and only if α > ρ−δ

α ≥ ρ if and only if α ≥ ρ−δ

α < ρ if and only if α < ρ+δ

α ≤ ρ if and only if α ≤ ρ+δ

The tolerance is specified with the command:

SET TOLERANCE TO value [PERCENT] ;

where the value given corresponds to δ. If the optional keyword PER-
CENT is given, then the tolerance is set to that percentage of a given ρ:

δ = value ∗ρ/100.0

The default value for the tolerance is 1.0E-6.

ONLINE HELP

eShell provides an online HELP feature to provide documentation of the
features available in the program. The command used is:

HELP [command_part_list] ;

If HELP is specified without any additional parameters, a listing of avail-
able command_parts is given. The user may then obtain additional in-
formation by picking from a menu. If the command_part_list is
provided, then information relating to the named command_parts is
presented without menu interaction.

User’s Manual eShell

13-2 UTLITIES

ENVIRONMENT SETTINGS

Because there are many environment variables that may be SET, a special
command is available to list their current values. This command is:

SHOW [variable_class_list];

If the optional variable_class_list is not given, then all environ-
ment parameters will be shown. Otherwise, one or more vari-
able_class_terms may be selected:

variable_class_list ⇒













FILES
COL____UMNS

PAGE
VERSION
CONFIG

OPEN DATABASES













where FILES requests a summary of the active files, COLUMNS a sum-
mary of current report formatting data for all attributes, PAGE a sum-
mary of the current report page settings, VERSION displays the current
version number of the eShell program, CONFIG shows the Configuration
parameters which are in effect, and OPEN DATABASES gives the name,
status, and access level of all open databases.

eShell User’s Manual

UTLITIES 13-3

This page is intentionally blank.

User’s Manual eShell

13-4 UTLITIES

 A. eQL COMMAND SUMMARY

This Chapter provides a summary of all eQL commands and a general
description of their function. All of the commands have been described in
detail in previous Chapters of this manual. The eQL functions are
grouped into the following categories:

❐ Using eShell and eQL Command Editing

❐ Directory Creation and Maintenance

❐ Entity Creation

❐ Data Retrieva - Relations

❐ Graphing Retrieved Data

❐ Indexing Relational Entities

❐ Data Retrieval - Non-Relational Entities

❐ Inserting Data into Entities

❐ Updating Data

❐ Removing Entities and Data

❐ File Environment Commands

❐ Report Generation Commands

❐ Utility Commands

Many of the eQL commands use common parts, or clauses, each of which
may be very complex. These clauses, called metasymbols, are also in-
cluded in this Appendix.

eShell User’s Manual

eQL COMMAND SUMMARY A-1

Chapter 1 - Using eShell

This Chapter describes how you use the eShell program. This includes
the commands to open and close databases, how to enter commands, and
how to use symbols to assist in your command entry.

OPEN database_name [= ’ phys_name ’]











NEW
TEMP

WITH




READ
WRITE
ADMIN














 [’ params ’] ;

Opens an existing or new database for activity.

HELP [command_part_list] ;

Requests information about eQL commands.

CLOSE database_name [DELETE] ;

Closes an open database.

LIST [line_1 [TO line_n]] ;

List all of, or selected lines of, the active command.

DELETE [line_1 [TO line_n]] ;

Deletes current, or selected lines of, the active command.

ENTER ’ new_line ’;

Adds a new line to, or within, the active command.

CHANGE /string_1 / string_2 /;

Changes the first occurance of a string of characters within the active
command.

RUN;

Executes the active command.

END;

Terminates the eShell session.

DEFINE [symbol_name [= value]] ;

Defines a substitution symbol.

UNDEFINE




 symbol _name
 ∗




 ;

Removes the definition of a substiution symbol.

User’s Manual eShell

A-2 eQL COMMAND SUMMARY

SET PASSWORDS [ON database_name] password_list ;

Allows you to change passwords on any open database for various data-
base privileges.

password_term ⇒

















 READ
 WRITE
 ADMIN




 password

CLEAR




 READ
 WRITE
 ADMIN

















Defines the new passwords for one or more privilege levels.

Chapter 2 - Creating and Maintaining Directories

You may structure your database to reflect the organization of your data
by using a directory structure. This Chapter describes the commands
used to create and maintain that structure.

MKDIR path ;

Creates a new directory.

CD [path] ;

Changes, or displays, current working directory.

RMDIR path ;

Removes an existing directory.

DIRECTORY [path]













ALL
REL____ATION
MAT____RIX
FREE_____FORM
STR____EAM
DIR____ECTORY













 


DATE
SUM____MARY




 ;

Requests a directory listing.

DIRECTORY ent_name [ALLVER] 


DATE
SUM____MARY




 ;

Requests a directory listing for entities.

DESCRIBE entity_name ;

Provides a description of any of the entities contained within the eBase
database.

RELEASE ent_name ;

Specifies a particular subscripted version of an entity to be the Released
Version.

eShell User’s Manual

eQL COMMAND SUMMARY A-3

UNRELEASE ent_name ;

Deletes the Released Version of an entity.

COPY entity_name_1 TO entity_name_2 [ALLVER] ;

Makes a physical copy of one or more subscripted versions of an entity.

RENAME entity_name_1 TO entity_name_2 [ALLVER] ;

Renames one or more subscripted versions of an entity.

ALIAS entity_name TO alias_name [ALLVER] ;

Creates a new name, or alias, by which one or more subscripted versions
of an entity may be referenced.

COMPRESS mat_name_1 TO mat_name_2 [ALLVER] ;

To transform an UNCOMPRESSED Matrix entity to a COMPRESSED Ma-
trix entity.

UNCOMPRESS mat_name_1 TO mat_name_2 [ALLVER] ;

To transform a COMPRESSED Matrix entity to an UNCOMPRESSED Ma-
trix entity.

Chapter 3 - Creating Database Entities

This Chapter describes the commands and techniques for adding new
entities to an existing eBase database.

CREATE RELATION rel_name



 (schema_list)

LIKE existing _rel _name




 ;

Creates a new Relation, with a specified schema, on the database. Alter-
nately, the schema of an existing Relation may be used to specify the
schema.

CREATE MATRIX mat_name



 (matrix _attrib)

LIKE existing _mat_name




 ;

Creates a new Matrix entity, with specified attributes, on the database.
Optionally, the attributes of an existing matrix may be used to specify the
schema.

CREATE FREEFORM ent_name



 (num_type)

LIKE existing _ent _name




 ;

Creates a new Freeform entity with specified attributes. Optionally, the
attributes of an existing entity may be used to specify the schema.

User’s Manual eShell

A-4 eQL COMMAND SUMMARY

CREATE STREAM ent_name



 (num_type)

LIKE existing _ent _name




 ;

Creates a new Stream entity with specified attributes. Optionally, the
attributes of an existing entity may be used to specify the schema.

Chapter 4 - Retrieving Data from RELATIONs

The most powerful use of the eQL language is its ability to retrieve data
from an eBase database. This Chapter describes the commands that may
be used to retrieve data from Relations and also the use of indexing to
improve query performance.

[RELATION] SELECT select_list FROM_part
[WHERE_part]
[GROUP_part]
[ORDER_part] ;

Selects all, or part, of a Relation and displays the result.

WHERE_part ⇒ WHERE search_condition

Qualifies, or places constraints on, the entries of the Relation being se-
lected. The WHERE_part may also specify one or more subqueries.

GROUP_part ⇒ GROUP BY attribute_list

Requests that the resulting data be grouped by unique values of the
selected attributes.

ORDER_part ⇒ ORDER BY sort_list

Requests that the results of the query be sorted on one or more selected
attributes.

SELECT INTERSECTION OF rel_name_1 AND rel_name_2
 [AS rel_name_3] ;

Selects the set of entries contained in both of two Relations which have
the same schema, and optionally creates a new Relation containing these
entries.

SELECT UNION OF rel_name_1 AND rel_name_2
 [AS rel_name_3] ;

Selects the set of distinct entries contained in either of two Relations
which have the same schema, and optionally creates a new Relation con-
taining these entries.

eShell User’s Manual

eQL COMMAND SUMMARY A-5

SELECT DIFFERENCE OF rel_name_1 AND rel_name_2
 [AS rel_name_3] ;

Selects the set of entries in one Relation that are not in another. Both
Relations must have the same schema, and optionally creates a new Rela-
tion containing these entries.

Chapter 5 - Graphing Retrieved Data

This Chapter describes the commands that may be used to graph, or plot,
retrieved data from Relations and control the windows where the plots
are displayed.

SET ACTIVE WINDOW TO plot_win_id ;

Selects an active plot window.

CLEAR




 PLOT WINDOW plot_win_id

 ALL PLOT WINDOWS




 ;

Removes all, or a specified, plot windows.

REPLOT [plot_win_id] ;

Replots the data is a specified plot window.

XYPLOT x_attrib, y_attrib_list FROM_part
[WHERE_part]
[GROUP_part]
[ORDER_part] ;

Selects all, or part, of a Relation for plotting. The WHERE_part, GROUP-
part, and ORDER_part are the same as for the Relational query.

SET DRAWLINE TO




 ON
 OFF




 ;

SET SYMBOL TO




 ON
 OFF




 ;

Selects the drawing of lines and symbols for the graph data.

SET FTITLE TO ’text ’ ;

SET




 XTITLE
 YTITLE




 TO ’ text ’ ;

CLEAR




 FTITLE
 XTITLE
 YTITLE




 ;

Allows plot titles to be added and cleared.

User’s Manual eShell

A-6 eQL COMMAND SUMMARY





 SET
 CLEAR















 XMIN
 XMAX
 YMIN
 YMAX










 TO value ;

Allows plot data to be windowed

SET




 XLOG
 YLOG




 TO





 ON
 OFF




 ;

Selects one or two logarithmic scales.

SET




 XDIV
 YDIV




 TO inc ;

Controls the number of labeled divions on each axis of the plot.

SET GRID TO




 ON
 OFF




 ;

SET AXIS TO




 ON
 OFF




 ;

Control whether a grid is applied to the plot and whether the axes are
drawn.

ADDCURVES x_attrib , y_attrib_list FROM_part
 [WHERE_part]
 [GROUP_part]
 [ORDER_part] ;

Adds a new curve to an existing plot in the Active Window.

MXYPLOT param , x_attrib , y_attrib FROM_part
 [WHERE_part]
 [GROUP_part]
 [ORDER_part] ;

Selects all, or part, of a Relation for plotting. The WHERE_part, GROUP-
part, and ORDER_part are the same as for the Relational query. One
curve is drawn for each unique value of the specified param .

Chapter 6 - Indexing Relational Entities
CREATE [UNIQUE] INDEX ON rel_name
 (attribute_list);

Creates an index for one or more attributes of a Relation.

PURGE INDEX ON rel_name (attr_list) ;

Deletes a previously created index from a Relation.

eShell User’s Manual

eQL COMMAND SUMMARY A-7

Chapter 7 - Retrieving Data from Non-Relational Entities

This Chapter describes commands that may be used to retrieve data from
Matrix, Freeform, and Stream entities.

MATRIX SELECT [format]
select_list
FROM mat_name
[WHERE_part] ;

Allows selected portions of a Matrix to be displayed in a specified for-
mat.

format ⇒ (



FULL
BANDED




)

Specifies the format of the Matrix selection results.

select_list ⇒




 term_list
 ∗





Specifies the terms within rows or columns that will be selected from the
Matrix.

WHERE_part ⇒ WHERE




 COLUMNS
 ROWS




 IN rorc_list

Restricts the Matrix selection to terms from specific rows or columns.

FREEFORM SELECT select_list
FROM free_name
[WHERE_part] ;

Allows selected portions of a Freeform entity to be displayed.

select_list ⇒




 value_list
 ∗





Specifies the Data Values to be selected from a Freeform entity.

WHERE_part ⇒ WHERE




 RECORD = num
 RECORDS IN record _list





Restricts the Freeform selection to specific Records.

STREAM SELECT select_list
FROM free_name ;

Allows selected portions of a Stream entity to be displayed.

User’s Manual eShell

A-8 eQL COMMAND SUMMARY

Chapter 8 - Inserting Data into Entities

This Chapter describes the eQL commands which are available to insert
new data into Relational and Matrix entities.

INSERT INTO [RELATION] rel_name
[(proj_list)] value_part ;

Inserts a new entry into the named Relation.

value_part ⇒




 VALUES (value _list)
 subquery





Specifies the values defining the new Relational entry.

INSERT INTO MATRIX mat_name new_value_list ;

Inserts a new column or row into the specified matrix.

new_value_term ⇒ VALUES AT




row _id
col _id




 (value_list)

Specifies the numeric values to be entered into the new matrix column or
row. These are expressed in the special string format.

INSERT INTO FREEFORM free_name VALUES (value_list) ;

Creates a new Freeform entity Record.

INSERT INTO STREAM stream_name VALUES (value_list) ;

Specifies the Data Values to be appended onto a Stream entity.

Chapter 9 - Updating Data

This Chapter describes commands which allow individual data entries in
both Relations and matrices to be updated.

UPDATE [RELATION] rel_name SET value_list
 [WHERE_part];

Updates, or modifies, all or part of the data in a Relational entity that
meets the specified selection criteria.

UPDATE MATRIX matrix_name value_list

WHERE




 ROW
 COLUMN




 = rorc_id ;

Updates, or modifies, all or part of the data in a Matrix column or row.

value_term ⇒ SET VALUES AT TERM corr_id TO (values)

Specifies the new matrix values.

eShell User’s Manual

eQL COMMAND SUMMARY A-9

UPDATE FREEFORM free_name SET position TO value_list
WHERE RECORD = rec_id ;

Updates, or modifies, all or part of the data in a Stream entity.

UPDATE STREAM stream_name SET position TO value_list ;

Updates, or modifies, all or part of the data in a Freeform record.

ALTER rel_name ADD (new_schema_list);

Adds one or more new attributes to an existing Relation.

Chapter 10 - Removing Data from eBase

This Chapter describes the eQL commands that are used to remove enti-
ties and their data from the eBase database.

PURGE











REL____ATION
MAT____RIX

FREE_____FORM
STR____EAM










 entity_name [ALLVER];

Removes an entity and its data from the database

DELETE FROM [RELATION] rel_name [WHERE_part] ;

Deletes selected entries from the named Relation that meet the selection
criteria.

DELETE FROM MATRIX mat_name (list);

Deletes selected columns or rows from a Matrix entity.

DELETE FROM FREEFORM free_name (list);

Removes selected Records from a Freeform entity.

Chapter 11 - File Environment Commands

This Chapter describes a class of commands that can modify the file
environment under which eShell performs certain operations.

[START] file_name [param_list] ;

Executes an eQL Script File saved as a host-computer file and, optionally,
passes parameters to it.

SET ARCHIVE TO ’ file_name ’;

Defines a file on the host computer that will contain an archive created
from user-input commands.

User’s Manual eShell

A-10 eQL COMMAND SUMMARY

ARCHIVE




 ON
 OFF




 ;

Enables and disables the archive file.

SET REPORT TO ’ file_name ’;

Defines a file on the host computer that will contain reports created from
output displays.

REPORT




 ON
 OFF




 ;

Enables or disables the report file.

SET INTERFACE TO ’ file_name ’;

Defines a file on the host computer that will contain output displays
which are written in a user-specified format for subsequent processing by
other programs.

INTERFACE




 ON
 OFF




 ;

Enables or disables the interface file.

INTERFACE FORMAT ’ format_specifier ’;

Defines a Fortran format to be used in writing to the interface file.

EXPORT [path]




 BINARY
 FORMATTED




 file_name ;

Creates an Export File used to move an eBase from one computer to
another.

IMPORT file_name [path] ;

Restores a previously EXPORTed eBase.

Chapter 12 - Report Generation

This Chapter presents the methods available for generating customized
reports suitable for inclusion in design reports.

SET COLUMN attribute_name column_option s ;

Allows the user to specify titling and format options for each column of a
report.

column_option ⇒ [heading_info]
[format_info]

eShell User’s Manual

eQL COMMAND SUMMARY A-11

[justification]
[TEMP] [CLEAR]

Defines the available column options.

heading_info ⇒ LABEL




’ string ’
’ multi _line _title ’





Defines column heading label as one or more lines.

justification ⇒




 LEFT
 RIGHT

 CENTER





Selects column titling justification option.

format_info ⇒ FORMAT ’













 I w
 Fw. d
 Ew. d
 Dw. d

 Aw
 Gw. d













 ’

Specifies the exact format to be used in displaying a column.

SET UNDERLINE TO ’ underline_character ’;

Sets the default character used for underlining attribute names in the
output display.

SET HEADER TO ’ header_line ’
[justification]
[DATE] [PAGE];

Defines text information to be placed at the top of each page of a display.

SET FOOTER TO ’ header_line ’
[justification]
[DATE] [PAGE];

Defines text information to be placed at the bottom of each page of a
display.

SET BREAK ON attribute_name [SKIP n] [PAGE] ;

Selects vertical spacing options as a function of changes in one or more
attribute values.

SET LINEWIDTH TO n
SET PAGELENGTH TO n
SET COLSPACE TO n
SET INTWIDTH TO n
SET FLOATWIDTH TO n

Selects characteristics of the the output display, including the width of an
output line, the number of lines in a display, the number of spaces be-

User’s Manual eShell

A-12 eQL COMMAND SUMMARY

tween displayed attributes, the width for displaying integer values, and
the width for displaying floating point values.

Chapter 13 - Utility Functions

This Chapter describes several utility functions available in eShell.

TREE [path] ;

Displays the Directory structure of an eBase database.

SET TOLERANCE TO value [PERCENT] ;

Specifies the tolerance used in comparing floating point numeric values
used in query commands.

HELP [command_part_list]];

Requests additional information about eQL commands.

SHOW [variable_class_list];

Provides a summary of current environment variables.

variable_class_list ⇒













FILES
COL____UMNS

PAGE
VERSION
CONFIG

OPEN DATABASES













Selects a subset of environment variables.

eShell User’s Manual

eQL COMMAND SUMMARY A-13

This page is intentionally blank.

User’s Manual eShell

A-14 eQL COMMAND SUMMARY

B. GLOSSARY

Active Command. eShell performs no action until you have entered a
complete command, including the semicolon. This command is called the
Active Command.

Active Plot Window. Is a graphics window, that may be defined by the
user, which contains the results of the next plotting command.

ADMINISTRATION Privilege. Is the eBase privilege level which allows
a user called the Database Administrator, DBA, to control the use of the
database and the specific access allowed by its users.

Archive File. A text file that contains an historical record of the commands
entered during an eShell interactive session. Specifically, it is a copy of
commands that have executed successfully. If a command has been edited,
only the final form of the command is archived. Those which contained
user errors are not put on the archive file. The principal purpose of this file
is to use it during a subsequent eShell session as a script file.

Attributes. The columns of a Relational entity. Each attribute has a name
and a data type associated with it.

Column-major. A method of storing a Matrix entity where the number of
columns in the matrix is dynamic, but the number of rows is fixed.

Command Buffer. An area where all the lines of your eQL command are
stored pending their execution.

Compressed Storage Mode (Matrix). eBase uses an optional data com-
pression technique to minimize the disk storage requirements of matrices.
This is called Compressing. Only the non-zero terms of compressed matri-
ces are stored, along with a small amount of control information. (See also
Uncompressed Storage Mode)

eShell User’s Manual

GLOSSARY B-1

Current Position. The line within the Command Buffer where you may
perform command editing.

Data Modeling. The process of designing representations of scientific
data. Factors to be considered include the quantity of data and the method
in which it will be accessed.

Directory. A named area of the eBase database which contains entities
which are related to each other.

Entity. An Entity is a database object which contains a Name, a Schema,
and a Data Component. (See also Entity Classes)

Entity Classes. Groups of eBase entities which share the same kinds of
schema. The four eBase entity classes are Relational entities, Matrix enti-
ties, Freeform entities, and Stream entities.

Entry. An Entry is a row in a Relational entity.

eQL. Is the eBase Query Language, based on the SQL standard for data-
base languages.

Export File. An external host-computer file which contains a binary or
formatted version of one or more entities contained in a specified directory
tree which can then be moved to a different host-computer. (See also Import
File)

Field. A Field is a single data item in a Relational entity. It is found at a
single row and column position in the table.

Freeform Entity. Are a form of internal data representation that can some-
times be used to improve the performance of software applications. They
are collections of data with only a local and transient purpose. You may
think of Freeform entities as Fortran random files which have variable
length records. Because of its portability limitations, the use of the non-
schematic form of this entity class is discouraged for other than temporary
data.

Import File. An external host-computer file which contains a binary or
formatted version of one or more entities that were contained in a specified
directory tree that have been moved from a different host-computer. (See
also Export File)

Index. An index for a Relational entity serves the same purpose as an index
in a book — it allows faster access to the information that you wish to find.
eShell allows you to build one or more indexes for the attributes of a relation
so that the program may gain rapid access to the data.

Integrity. The protection of database contents from inadvertent distruc-
tion.

Interface File. An external host-computer file that contains the results of
eBase queries which have been formatted in a manner which facilitates
their further processing by some other software.

User’s Manual eShell

B-2 GLOSSARY

Key. A single unique Index for a Relational entity is often called a Key.

Keywords. Character string within eQL commands that must be entered
exactly as shown in this manual.

Matrix Entity. Arrays of numbers used in mathematical formulae typi-
cally encountered in engineering and physical science software applica-
tions. A matrix is defined in the standard mathematical manner as an array
of n rows and m columns. (See also Compressed Storage Mode)

Multischematic Database. A database which allows different types of
data structures to be represented in an efficient manner. (See also Entity
Classes)

Null Field. Is a field within a Relational entity which is undefined. This
occurs, for example, when a new entry is inserted into the entity where all
of the attributes are not assigned values.

Orientation (Matrix). Defines the manner in which a Matrix entity is
stored. Selections Column-major storage and Row-major storage, respec-
tively. (See also Compressed, Uncompressed, Column-major, and Row-
major)

Passwords. eBase databases have three levels of Passwords which can be
used to secure the data against inadvertent destruction or unauthorized
use. These passwords allow READ, WRITE, and ADMINISTRATION
privileges.

Path. A sequence of Directory names which indicates a location within
the directory hierarchy.

Privilege. The database access allowed by a user. These are defined by the
READ, WRITE, and ADMINISTRATION passwords. (See also Passwords)

Query. An eQL command which retrieves data from one or more eBase
Relational or Matrix entities.

READ Privilege. Allows users to read data from the eBase database.

Relational Entity. A table of data. eBase tables have rows, which are
called Entries and columns, which are called Attributes. A particular data
value at a given entry and attribute location is called a Field. (See also
Entries, Attributes, and Fields)

Report File. A file which captures all query and report output for which
you wish to obtain hardcopy.

Root Directory. When you OPEN an eShell database, you will be placed in
the root directory of that database.

Row-major. Method of storing a Matrix entity where the number of rows
in the matrix is dynamic, but the number of columns is fixed.

Schema. A set of rules defining the data characteristics of a database
entity.

eShell User’s Manual

GLOSSARY B-3

Script File. A text file that resides on the eShell host computer. Unlike a
Command File, it may contain a sequence of many eQL commands.

Shape (Matrix). Defines the shape of a Matrix entity. Selections are REC-
TANGULAR, SQUARE, SYMMETRIC, DIAGONAL, and IDENTITY .

Storage Mode (Matrix). Defines the storage mode of a Matrix entity. Se-
lections are COMPRESSED and UNCOMPRESSED (See also Compressed,
Uncompressed, Column-major, and Row-major)

Stream Entity. A continuous stream of data values that may be directly
and randomly addressed. You may best think of this type of entity as a
low-level Unix or DOS file.

Subquery. The portion of a query in which the selection of data is based
on the results of another query.

Subscript. An additional modifier for an eBase entity name which allows
great flexibility in data modeling.

Substitution Symbol. A variable name or number which is used as an
argument to an eQL command. The symbol is preceded by an ampersand
(&).

Type (Matrix). Defines the data type of a Matrix entity. Selections are INT ,
RSP, RDP, CSP, and CDP.

Uncompressed Storage Mode (Matrix). The Matrix entity storage mode in
which all matrix terms are on the database. (See also Compressed Storage
Mode)

Working Directory. Your current location within the database directory
hierarchy is called the Working Directory.

WRITE Privilege. Allows users to write data onto the eBase database.

XYPLOT. Is a graphic display of the results of a relational query.

User’s Manual eShell

B-4 GLOSSARY

INDEX

!
& character 11-1
’ character 1-11
* character 1-14 , 1-15, 2-4, 4-2, 7-2, 7-5
.. character 1-16
/ character 2-2
; character 1-13

A
Abbreviating commands 1-7
Absolute directory 2-1
Active command 1-13
ADDCURVES eQL command 5-11
ADMINISTRATION privilege

Description 1-16
Adobe Acrobat reader 1-11
ALIAS eQL command 2-8
ALL option in WHERE clause 4-6
ALTER eQL command 9-6
AND function 4-4
ANY option in WHERE clause 4-6
Archive file 11-2
Arithmetic expressions in SELECT 4-6
Arithmetic expressions in XY-plot 5-11
Arithmetic functions 4-8
Array attributes

Formatting in reports 12-6
In Relations 3-3

Attributes
Arrays in query 4-3
Arrays in Relations 3-2
Description 1-5

NOT NULL 3-2, 8-2
NULL 3-3
Of Matrix entities 3-4
Of Relational entities 3-1
Of Stream entities 3-6
Virtual 4-6

Attributes, Selecting DISTINCT 4-2
AVG operator 4-15

B
BAND Matrix print option 7-3
Basic name 1-9

C
Case-insensitivity 1-11
CD eQL command 2-2
CHANGE (command line) eQL command 1-14
Changing databases while in eSHELL 1-12
Changing directories 2-2
eQL commands 5-2
CLEAR eQL command 5-2
CLOSE eQL command 1-2, 1-13
Column-major orientation 1-5
Command file 11-1
Comparing values in a set 4-6

ALL 4-6
ANY 4-6
SOME 4-6

Compressed storage mode 1-5
COPY eQL command 2-8
COUNT operator 4-15
Counting entries in a relation 4-17

eShell User’s Manual

Index-1

CREATE eQL commands
FREEFORM 3-5
MATRIX 3-3
RELATION 3-1
STREAM 3-6

CREATE INDEX eQL command 6-1
Creating a new database 1-12
Creating directories 2-2
Creating new entities

Freeforms 3-5
Matrices 3-3
Relations 3-1
Streams 3-6

Current position 1-14

D
Data component 1-2
Data modeling 1-2
Data values

See Stream entities
Dates on report pages 12-4
DEFINE eQL command 1-2, 1-15, 11-2
DELETE (command line) eQL command 1-14
DELETE eQL commands

FREEFORM 10-4
MATRIX 10-3
RELATION 10-2

DESCRIBE eQL command 2-6
Difference of two relations 4-18
Dimensionality, of entities 3-6
DIR eQL command 1-3, 2-3, 2-5
Directory chain 2-2
Directory hierarchy

Absolute directory 2-1
Changing directories 2-2
Creating 2-2
Description 1-3
DIR using entity specification 2-5
DIR using path specification 2-3
Fully qualified entity name 2-1
Listing 2-3
Referencing in commands 2-1
Relative directory 2-1
Removing 2-3
Root directory 2-2
Working directory 2-2

Directory tree 13-1
Distinct attributes, selecting 4-2
DISTINCT option in SELECT 4-2

E
eBASE

Description of 1-1
Directory hierarchy 1-3
Organization of 1-2

eBASE:APPLIB 1-2
eBASE:MATLIB 1-2
Editing eQL commands 1-14

END eQL command 1-15
ENTER (command line) eQL command 1-14
Entity 1-2
Entity classes

Description of 1-4
Dimensionality 3-6
Freeform 1-6
Matrix 1-5
Relational 1-5
Stream 1-6

Entity subscripts 1-4
Entries 1-5
Environment

Showing current values 13-3
Environment files

showing current file names 13-3
Environment variables 1-13
eQL command syntax

Abbreviating 1-7
Active command 1-13
Case-sensitivity 1-11
Description 1-7
Editing 1-14
Multiple line entry 1-13
Substitution variables 11-1
Symbol substitutions 1-15

eQL commands
See also eQL SET commands
ADDCURVES 5-11
ALIAS 2-8
ALTER 9-6
CD 2-2
CHANGE (command line) 1-14
CLOSE 1-2, 1-13
COMPRESS 2-8
COPY 2-8
CREATE FREEFORM 3-5
CREATE INDEX 6-1
CREATE MATRIX 3-3
CREATE RELATION 3-1
CREATE STREAM 3-6
DEFINE 1-15, 11-2
DELETE (command line) 1-14
DELETE FROM FREE 10-4
DELETE FROM MATRIX 10-3
DELETE FROM RELATION 10-2
DESCRIBE 2-6
DIR 1-3, 2-3, 2-5
END 1-15
ENTER (command line) 1-14
EXPORT 11-5
FREEFORM SELECT 7-5
HELP 13-2
IMPORT 11-5
INSERT INTO 8-1
INSERT INTO FREEFORM 8-4
INSERT INTO MATRIX 8-3
INSERT INTO STREAM 8-5
INTERFACE 11-3
LIST (command line) 1-13
MATRIX SELECT 7-1

User’s Manual eShell

Index-2

MKDIR 2-2
MXYPLOT 5-13
OPEN 1-2, 1-12
PURGE 1-10, 10-1
PURGE INDEX 6-6
RELEASE 2-8
RENAME 2-8
REPLOT 5-2
REPORT 11-3
RMDIR 2-3
RUN (command line) 1-14
SELECT 4-1
SELECT DIFFERENCE 4-18
SELECT INTERSECTION 4-18
SELECT UNION 4-18
SET ACTIVE WINDOW 5-2
SET ARCHIVE 11-2
SET INTERFACE 11-3
SET PASSWORDS 1-16
SET REPORT 11-3
START 1-10, 11-1
STREAM SELECT 7-7
TREE 13-1
UNCOMPRESS 2-8
UNDEFINE 1-15
UNRELEASE 2-8
UPDATE 9-1
UPDATE FREEFORM 9-4
UPDATE MATRIX 9-3
UPDATE STREAM 9-5
XYPLOT 5-2

eQL SET commands
BREAK 12-5
COLSPACE 12-5
COLUMN 12-2
FLOATWIDTH 12-6
FOOTER 12-4
HEADER 12-4
INTWIDTH 12-6
LINEWIDTH 12-5
PAGELENGTH 12-5
PASSWORD 1-16
UNDERLINE 12-3

eQL, Description 1-1
eSHELL

Description 1-1
Using the program 1-11

Examples, Creation
Freeform 3-5
Matrix 3-5
Relation 3-2
Relation with array attributes 3-3

Examples, Describe
Describing a Matrix entity 2-6
Describing a Relational entity 2-6
Describing a single subscripted entity 2-7
Describing a Stream Entity 2-6
Describing an Freeform Entity 2-6
Describing an indexed Relation 2-7

Examples, Directories
Changing the working directory 2-2

Creating 2-2
Default directory listing 2-3
Directory listing 2-4
Entity directory listing 2-5
Entity version directory listing 2-5
Released entity directory listing 2-5
Removing a directory 2-3

Examples, eSHELL
Editing a command 1-14
Multiple line command entry 1-13
Running the program 1-12 , 1-13
Saving a command in a file 1-15
Using a command file with variables 1-15, 11-2
Using symbol substitutions 1-15

Examples, Files
Interface file, writing to 11-3

Examples, Freeform
Deleting records 10-4
Inserting a record 8-4
Printing 7-5
Updating 9-5
Using a WHERE clause 7-6

Examples, Index
Creating a unique index 6-2
Creating an index for a Relation 6-2
Index performance for a Relation 6-5
Purging an index of a Relation 6-6
Using a unique index 6-2

Examples, Matrix
Deleting columns 10-3
Inserting a column 8-3
Printing BAND 7-3
Printing FULL 7-3
Updating 9-4
Updating illegally 9-4
Using a WHERE clause 7-4

Examples, Relation
Altering the schema 9-6
Arithmetic expressions in select 4-7
Arithmetic expressions in XY-plot 5-11
Deleting entries 10-2
Difference of two Relations 4-19
Group operators in a query 4-15 , 4-16
grouping query results 4-11
Inserting into a projection 8-2
Inserting new data 8-2
Inserting with a subquery 8-2
Intersecting two Relations 4-18
Joining two relations 4-9
Mixing attributes and group operators 4-17
Multiple subqueries 4-14
Nested subqueries 4-15
NULL fields when altering 9-7
Plotting a relation 5-3
Query with an array attribute 4-3
Querying a relation 4-2
Querying with a Path 4-4
Selecting DISTINCT attributes 4-3
Simple subquery 4-13
sorting query results 4-12
Subquery resulting in a set 4-14

eShell User’s Manual

Index-3

The COUNT group operator 4-17
Union of two Relations 4-18
Updating 9-2
Updating with a subquery 9-3
Updating with a WHERE clause 9-2
Using WHERE in a query 4-4 , 4-5
Using WHERE in an XY-plot 5-8 , 5-9
WHERE clause with set selection 4-6
WHERE with logical expression 4-5
XY-plot with logical expression 5-9
XY-plotting with a Path 5-7

Examples, Report
Column formats 12-4
Column labels 12-3
Titling 12-4
Using BREAK ON 12-5

Examples, Stream
Inserting data values 8-5
Printing 7-7
Updating 9-5

EXPORT eQL command 11-5
Exporting databases 1-17, 11-4

F
Field 1-5
File environment

Archive file 11-2
Export file 11-4
Import file 11-4
Interface file 11-3
Report file 11-3
Script file 11-1

Floating point values
Comparison TOLERANCE 4-4, 5-9, 13-2

Formats
Current environment 13-3
Defaults for numeric 12-6
EXPORT and IMPORT files 11-5
Interface file 11-3
Report columns 12-3

Formatting commands
Column labels 12-1
Grouping commands 12-5
Page control 12-5
Page titles 12-4

Freeform entities 1-6
Creating 3-5
Directory entry 2-4
Inserting new records 8-4
Records 1-6
Removing data from 10-4
Schematic 1-6
Updating 9-4
Updating records 9-5

FREEFORM SELECT eQL command 7-5
FULL Matrix print option 7-3
Fully qualified entity name 2-1

G
GROUPing

GROUP BY Clause 4-11
Operators 4-15
SELECTed data 4-11

H
HELP 1-13, 13-2

I
IEEE Floating-Point standard 1-17

See also importing and exporting databases
IMPORT eQL command 11-5
Importing databases 1-17, 11-4
IN option in WHERE clause 4-6, 5-10
Index

Creating 6-1
Definition 6-1
Key attribute 6-1
Overhead 6-6
Performance 6-4
Purging 6-6
Query performance 6-3
Unique 6-1

Indexed attributes 2-7
INSERT INTO eQL command 8-1
INSERT INTO FREEFORM eQL command 8-4
INSERT INTO MATRIX eQL command 8-3
INSERT INTO STREAM eQL command 8-5
Integrity 1-17
Interface file 11-3

Formats 11-3
Intersection of relations 4-18

J
Joining relations 4-8
Justification

Column labels 12-3
Page titles 12-4

K
Key attribute

See Index
Keywords, in commands 1-7

L
Labels for columns 1-12, 12-1 , 12-2
Limitations, database size 1-18
Limitations, system 1-17
Link component 1-2
LIST (command line) eQL command 1-13

User’s Manual eShell

Index-4

Logical AND 4-4
Logical OR 4-4

M
MATLIB 1-2, 8-4, 10-3
Matrix

Inserting new columns 8-3
Matrix attributes

Numeric type 3-3
Shape 3-3
Static dimension 3-3
Storage mode 3-3

Matrix entities 1-5
Attributes of 3-4
Creating 3-3
Directory entry 2-4
Inserting columns or rows 8-3
MATRIX SELECT 7-2
Numeric type 1-5
Print options 7-2
Removing data from 10-3
See also Report generation
Restrictions on UPDATE operation 9-4
Shape 1-5
Shape changes 10-3
Storage Mode 1-5
Terms 1-5
Updating 9-4

MATRIX SELECT eQL command 7-1
MAX operator 4-15
Metasymbols 1-7
MIN operator 4-15
MKDIR eQL command 2-2
Multiple databases

Working with 1-17
Multischematic database, Description of 1-2
MXYPLOT eQL command 5-13

N
Name component 1-2
Naming rules

Basic name 1-9
eBASE objects 1-9
Entities 1-10
Files 1-10

NOT IN option in WHERE clause 4-6, 5-10
NULL attributes

When altering Relational schema 9-6
NULL fields 3-3

O
Online manual 1-11
OPEN eQL command 1-2, 1-12
Operators

Arithmetic 4-4
Logical 4-4

OR function 4-4

Orientation
Column-major 1-5
Row-major 1-5

P
Page Format

Current values 13-3
Password privileges 1-12, 1-16

Current values 13-3
Performance, query 6-3
Portability 1-17
Position

See Stream entities
Preference files 1-11
Privilege requirements

For altering schema of Relation 9-6
For updating a Matrix 9-4
For updating a Relation 9-3
Inserting columns into a MATRIX 8-3
Inserting data values into a STREAM 8-5
Inserting entries into RELATIONs 8-2
Inserting records into a FREEFORM 8-4
To create Freeform entities 3-5
To create Matrix entities 3-4
To create Relations 3-2
To create Stream entities 3-6
Updating Freeform entities 9-5
Updating Stream entities 9-5

Projection 8-1
Protection 1-16
PURGE eQL command 1-10, 10-1
PURGE INDEX eQL command 6-6

Q
Query

See also SELECT command
Definition 4-1

R
READ privilege

Description 1-16
Records, of Freeform entity 1-6
Relation

Algebraic operations on 4-18
Updating 9-2

Relational attributes
Selecting all 4-2
Selecting in any order 4-2

Relational entities 1-5
Altering the schema 9-6
Attributes 1-5
Attributes of 3-1
Creating 3-1
DIFFERENCE 4-19
Directory entry 2-4
Entries 1-5
Fields 1-5

eShell User’s Manual

Index-5

See also Indexing
Inserting entries 8-2
INTERSECTION 4-18
Joining 4-8
Projection 8-1
Removing data from 10-2
See also Report generation
UNION 4-18
Updating 9-1

Relative directory 2-1
RELEASE eQL command 2-8
Released version

Changing 2-8
Directory 2-4
Removing 2-8
Selecting 2-8

Removing data from eBASE
Columns or rows of a matrix 10-3
Complete entities 10-1
Entries from a RELATION 10-2

Removing directories 2-3
RENAME eQL command 2-8
REPLOT eQL command 5-2
Report file 11-3
Report generation

Column labels 12-1
Formatting commands 12-1
Page control commands 12-5
Page titling 12-4

Reserved words 1-17
Restrictions

On Matrix UPDATE operation 9-4
RMDIR eQL command 2-3
Root directory 2-2
Row-major orientation 1-5
RUN (command line) eQL command 1-14

S
Sample eBASE database 1-18
Schema

Altering for existing Relations 9-6
Components 1-5
Defining for new Relation 3-1
Description 1-2

Schematic Freeform entity 1-6
Schematic Stream entity 1-6
Screen output from query 4-3
Screen output from XY-plotter 5-4
Script file

Using variables 11-2
Security 1-16
SELECT DIFFERENCE eQL command 4-18
SELECT eQL command 4-1
SELECT INTERSECTION eQL command 4-18
SELECT UNION eQL command 4-18
Selecting values in a set 4-6
Set

Definition 4-6, 5-10
SET ACTIVE WINDOW eQL command 5-2
SET ARCHIVE command 11-2

SET eQL commands
BREAK 12-5
COLSPACE 12-5
COLUMN 12-2
FLOATWIDTH 12-6
INTWIDTH 12-6
LINEWIDTH 12-5
PAGELENGTH 12-5
SHOW 13-3
TOLERANCE 13-2
UNDERLINE 12-3

SET FOOTER eQL command 12-4
SET HEADER eQL command 12-4
SET INTERFACE eQL command 11-3
SET PASSWORD eQL command 1-16
SET REPORT eQL command 11-3
SET SCRIPT eQL command 11-1
SHOW 1-13
SHOW eQL command 13-3
Size of database, limitations 1-18
SOME option in WHERE clause 4-6
Sorting SELECTed data 4-12
SQL language 1-1
START eQL command 1-10
Storage mode

Compressed 1-5
Uncompressed 1-5

Stream entities
Attributes of 3-6
Creating 3-6
Defined 1-6
Directory entry 2-4
Inserting data values 8-5
Inserting new data values 8-5
Schematic 1-6
Updating 9-5
Updating data values 9-5

STREAM SELECT eQL command 7-7
Subdirectories 2-2
Subquery

In relational INSERT 8-2
In relational UPDATE 9-3
Specifying in a SELECT 4-13

Subscripted Entities
* 2-4
Creating 3-6
Description 1-4
Dimensionality 3-6
DIR results 2-5

Substitution variables 11-1
SUM operator 4-15
Syntax of eQL commands

See eQL command syntax
System interface manual 1-1

T
Term, of Matrix 1-5
Tolerance for floating point values 13-2
TREE eQL command 13-1

User’s Manual eShell

Index-6

Tree, of directory 13-1
Truth tables 4-4

U
uaidoc program 1-11
Uncompressed storage mode 1-5
UNDEFINE eQL command 1-2, 1-15
Union of relations 4-18
UNIQUE index of Relation 6-1
UNRELEASE eQL command 2-8
UPDATE eQL command 9-1
UPDATE FREEFORM eQL command 9-4
UPDATE MATRIX eQL command 9-3
UPDATE STREAM eQL command 9-5

V
Variable length records 1-6
Variables

In script file 11-2
Virtual attributes 4-6

W
WHERE clause

Comparing to a set 4-6
Contained in a set 4-6
Definition of 4-4
In Relational UPDATE 9-2
Joining relations 4-9
Subqueries in 4-13
Using ALL, SOME or ANY 4-6
Using IN and NOT IN 4-6, 5-10

Working directory 2-2
WRITE privilege

Description 1-16

X
XYPLOT eQL command 5-2

eShell User’s Manual

Index-7

This page is intentionally blank.

User’s Manual eShell

Index-8

	MORE MANUALS
	TABLE OF CONTENTS
	1. INTRODUCTION
	THE eBase SOFTWARE SUITE
	DATA MODELING
	eBase ORGANIZATION
	DIRECTORY HIERARCHY
	SUBSCRIPTED ENTITIES
	THE MULTISCHEMATIC MODEL: ENTITY CLASSES
	Relational Entities
	Matrix Entities
	Freeform Entities
	Stream Entities

	SYNTAX OF COMMANDS
	What is a Command?
	Keywords
	Abbreviating Keywords
	Simple Metasymbols
	Optional Command Parts
	Command Part Selectors
	Metasymbol Suffixes
	Complex Metasymbols
	Important Information

	NAMING eBase OBJECTS
	Basic Naming Rules
	Path Naming Rules
	Entity Naming Rules
	File Naming Conventions

	USING THE eShell PROGRAM
	Getting Started
	Online HELP
	Accessing Databases
	eQL Command Entry
	Symbol Substitutions

	DATABASE PROTECTION
	DATABASE INTEGRITY
	WORKING WITH MULTIPLE DATABASES
	MOVING DATABASES BETWEEN COMPUTERS
	eShell LIMITATIONS
	Reserved Words
	Size Limitations

	USING THE TUTORIAL

	2. DIRECTORIES AND ENTITIES
	REFERENCING DIRECTORIES IN COMMANDS
	CREATING DIRECTORIES
	THE WORKING DIRECTORY
	REMOVING DIRECTORIES
	LISTING DIRECTORIES
	Using a Path Specification
	The Entity Directory

	DESCRIBING DATABASE ENTITIES
	RELATIONS WITH INDEXED ATTRIBUTES
	RELEASING A SUBSCRIPTED VERSION
	MANIPULATING ENTITIES

	3. CREATING eBase ENTITIES
	CREATING RELATIONS
	THE "NULL" FIELD CONCEPT
	CREATING MATRICES
	CREATING FREEFORM ENTITIES
	CREATING STREAM ENTITIES
	CREATING SUBSCRIPTED ENTITIES

	4. RETRIEVING DATA FROM RELATIONS
	THE SELECT COMMAND
	THE OUTPUT FORMAT
	ATTRIBUTES WHICH ARE ARRAYS
	REFERENCING A PATH DURING THE QUERY
	QUALIFYING THE SELECTION
	SELECTING FROM A SET
	COMPARING TO A SET
	USING ARITHMETIC EXPRESSIONS
	THE JOIN OPERATION
	GROUPING DATA DURING THE SELECTION
	SORTING DATA DURING THE SELECTION
	THE SUBQUERY
	GROUP OPERATORS
	INTERSECTION, UNION AND DIFFERENCE

	5. GRAPHING RETRIEVED DATA
	THE PLOTTING WINDOWS
	Selecting the Plot Window

	THE PLOTTING COMMANDS
	THE XYPLOT COMMAND
	THE GRAPH ELEMENTS
	Symbols and Lines
	Titling
	Customizing the Axes

	REFERENCING A PATH DURING THE QUERY
	QUALIFYING THE SELECTION
	SELECTING FROM A SET
	USING ARITHMETIC EXPRESSIONS
	The ADDCURVES Command
	The MXYPLOT Command

	6. INDEXING RELATIONAL ENTITIES
	THE INDEX CONCEPT
	CREATING THE INDEX
	IMPROVING QUERY PERFORMANCE
	INDEX PERFORMANCE
	INDEX OVERHEAD
	PURGING AN INDEX

	7. RETRIEVING DATA FROM NON-RELATIONAL ENTITIES
	MATRIX ENTITIES
	The MATRIX Select Command
	Qualifying the Columns or Rows

	FREEFORM ENTITIES
	The FREEFORM Select Command
	Qualifying the Records

	STREAM ENTITIES

	8. INSERTING DATA INTO ENTITIES
	ADDING NEW ENTRIES TO RELATIONS
	ADDING NEW COLUMNS OR ROWS TO MATRICES
	ADDING NEW RECORDS TO FREEFORM ENTITIES
	ADDING DATA VALUES TO STREAM ENTITIES

	9. UPDATING ENTITY DATA
	UPDATING RELATIONAL ENTITIES
	UPDATING MATRIX ENTITIES
	RESTRICTIONS ON MATRIX UPDATING
	UPDATING FREEFORM ENTITIES
	UPDATING STREAM DATA
	CHANGING THE SCHEMA OF A RELATION

	10. REMOVING DATA FROM eBase
	REMOVING AN ENTITY
	REMOVING ENTRIES FROM RELATIONS
	REMOVING COLUMNS OR ROWS FROM MATRICES
	REMOVING RECORDS FROM FREEFORM ENTITIES

	11. FILE ENVIRONMENT COMMANDS
	THE SCRIPT FILE
	THE ARCHIVE FILE
	THE REPORT FILE
	THE INTERFACE FILE
	EXPORTING AND IMPORTING DATABASES

	12. REPORT GENERATION
	FORMATTING COMMANDS
	COLUMN LABELS AND FORMATS
	PAGE TITLES
	GROUPING COMMANDS
	PAGE CONTROL COMMANDS

	13. UTILITY FUNCTIONS
	DIRECTORY TREE
	TOLERANCE FOR FLOATING POINT COMPARISONS
	ONLINE HELP
	ENVIRONMENT SETTINGS

	A. eQL COMMAND SUMMARY
	Chapter 1 - Using eShell
	Chapter 2 - Creating and Maintaining Directories
	Chapter 3 - Creating Database Entities
	Chapter 4 - Retrieving Data from RELATIONs
	Chapter 5 - Graphing Retrieved Data
	Chapter 6 - Indexing Relational Entities
	Chapter 7 - Retrieving Data from Non-Relational Entities
	Chapter 8 - Inserting Data into Entities
	Chapter 9 - Updating Data
	Chapter 10 - Removing Data from eBase
	Chapter 11 - File Environment Commands
	Chapter 12 - Report Generation
	Chapter 13 - Utility Functions

	B. GLOSSARY
	INDEX

