
Planter Hitch

Theodore Idlewine, Chet Cooprider, Gideon Nobbe April 21, 2005

Objective:

To accurately position an ammonia mole knife four inches to the side of each row unit on a White 5100 four row planter. The mole knives must have depth adjustability. This project will design a hitch that will mount to a toolbar frame to pull the White 5100 four row planter.

Objectives:

- 1. Design the hitch geometry,
- 2. Calculate stress loads and deflection for hitch components,
- 3. Submit design plans for approval and funding,
- 4. Construct hitch, and
- 5. Test hitch.

Clamp Load Calculation:

·5/8 Grade 5, Torque 150 lb-ft

$$\sum_{i} f = \mu F_{CL}$$

$$f \ge 1800 \ lbf$$

$$f_1 = 1440x$$

$$\sum_{i} f = 14400 \ lbf$$

Hitch Thickness:

$$A = (w * t) - (2 * t * r)$$

$$\frac{1.5 * F}{A} = 20000$$

$$w = 4.5 \text{ in.}$$

$$F = 1800$$

$$r = .5625$$
 in.

$$t = .04$$
 in.

Actual Size Used .75 in.

Worst Case Loading Scenario for Hitch Thickness

t = 0.75 inches

$$A = 0.75 * \frac{\pi * d}{2}$$

$$A = 1.325$$

$$\frac{5600}{1.325} = 4226.4$$

$$\frac{20000}{4226.4}$$
 = 4.7 Safety Factor

Hole Shear of Hitch:

$$\frac{6 * 35000 \quad psi}{6 * \pi * L_1 * .75}$$

$$L_1 = 1.5 in.$$

Structural Strength of Main Frame Tubing:

$$\frac{F}{2} * D * C$$

$$I_{XX} = 9633 \quad lb$$

$$F = 1800 \qquad Lb$$

$$D = 42.75$$
 inches
 $C = 2$ inches

$$I_{XX} = 7.988$$

Sponsor: Gayle Hildreth