Skid Loader Boom Extension

Craig Hatfield, Clay Mothershead, Michael McCoy April 22, 2010

Problem Description

To satisfy a market need for a skid loader with an increased height capacity

Importance of project

An extension will allow the ability to stack hay bales higher than currently possible, utilizing full capacity of storage facilities.

Final Goal

Achieve 12 ft lift height while maintaining stability and load rating.

Objectives

- Perform finite element analysis on telescoping loader structure
- Use statics to determine proper balance
- ·Incorporate new hydraulic components
- Build functional prototype

Design Components

Structural Extensions inside current lift arms.
Hydraulic system to control extension
Center of gravity calculations for ballast
Electrical hydraulic control
Prototype Manufacturability

	List of Activties	Planned		Actual		%	Show Gantt for					Planned						Show Status?								
#		Start	Dur	Start	Dur	Done	1	2	3	4	5	i i	б	7	8	9		10	11	1	2	13	1	4	15	16
3	Prototype Production	1	16	1	8	100%		li.																		
4	Equipment list	5	2	5	3	100%					U.															
5	Purchase Equipment	6	2	6	4	100%																				
6	Bring Skidloader to Purdue	2	1	2	1	100%																				
7	Measurements	3	12			100%				1 1	n.				0):		1		B							Ï
8	Check System Capabilities	3	2	3	3	100%																				
9	Modify Loader Arms	8	3	2	1.	100%									0		1									Ï
10	Assembly Hydraulic Components	9	4			100%														THE REAL PROPERTY.						
11	Counter Balance	10	5			100%											1									
12						0%																				
13						0%																				
14	Design	1	16	1	8	100%													į.	10						
15	Free body Diagrams	3	2	6	1	100%																				
16	Hand Calculations	4	3	4	3	100%																				
17	Ansys	5	3	4	5	100%						1 1														
18	Hydraulic Curcuit	4	2	6	3	100%					ja.															
19	Easy 5	6	2	6	3	100%																				
20	Safety conciderations	1	16	1	8	100%																				
21																										
23	Presentation 1	3	1_	3	1	100%																				
24	Presentation 2	9	1	9	1_	100%																				
25	Presentation 3	13	1	13	1	100%																				
28	Report	12	16			10%																				
29	Poster Presentation	15	1	15	1	0%																				

Design Methodology

Pro Engineer

Computer model to aid in Design Conceptual image of Prototype Allows for FEA to be performed in ANSYS

ANSYS

Stress and Deflection Analysis of new extension Stress Analysis of original lift arms due to new loading. Verification of Loading Conditions "Hand Calculations"

Hydraulic System

Design for application speed
Design for rated pressure and flow
Worst loading conditions

Counter Balance

Calculate center of gravity
Optimize location of weights
Limit weight of machine

Prototype Production

Modification of Machine Fabrication of Extension arms Integrating new Hydraulic System Painting

Design Testing

Flow rate Testing
Flow splitting tests
Extension Testing
Complete Prototype Testing
Counter Balancing Testing

Important Numbers

System pressure = 2500 psi
Rated Load = 1850 lbs
Design cycles = 150,000
Max deflection = .87in
Max Stress = 27,900 psi
Machine Weight = 4500 lbs
New Machine Weight = 5000lbs

First test of the hydraulic system

PURDUE Skid Loader Boom Extension TEPE Craig Hatfield, Clay Mothershead, Michael McCoy ABE April 22, 2010

Important Calculations

- Beam Deflection
- Lift Force
- Hydraulic Flows
- Weld Calculations
- Center of Gravity

Pro Engineer computer model of the full structural design

ANSYS computer stress analysis of the full structural design

New hydraulic flow dividers and DCV

First test of the extension arms

Bleeding air from hydraulic system

Complete machine before paint

Conclusion

Working prototype that achieves a 12 ft work height.

A full extension of 3.5 ft.

The machine's stability is maintained.

Market for new design 12% storage capacity in Hoop Barns

Total Cost for Modifications \$4050

Painting Complete

Hydraulic system Complete

Counter balance data Complete

Mechanical structure Complete

Electrical system Complete

Final load test

Future Design Considerations

- Account for hydraulic fittings in design
- Design extension cylinders to be inside of extension arms
- Addition of a plastic wear plates inside extension
- Grease fittings for extension arms
- •Incorporating a second torque tube

PURDUE Skid Loader Boom Extension E. ASM, FBPE) Craig Hatfield, Clay Mothershead, Michael McCoy ABE April 22, 2010

Delta Companies ABE Department Valtec Hydraulics

