

Rachel Bredeweg (BFPE), Emily Johnson (BFPE), Kelly Taylor (CHE)

Objective:

To design a process to create a soy flour that is low fat and a gluten-free alternative.

Problem Statement:

To determine which variables affect how much oil is removed •Variables to consider:

> Inlet Moisture Content (Temperature of Extruder) Number of Extrusions (Oil Removal)

Market Analysis:

With the increase in awareness of Celiac Disease, more and more individuals are living a gluten-free lifestyle. Approximately twenty-five percent of consumers desire more gluten-free foods in the market. With an increasing market, our company will produce 1% of the total market which is approximately 10,165,200 pounds of soy flour per year.

Overview of Process:

Raw soybeans are dried in a rotary dryer from 13% moisture to 8% moisture. The dried feed is then fed into the first extruder. Once extruded, the meal is then re-hydrated to 8% in a mixer and then fed into the second extruder. The product is then milled. The extruders are extruding into a slight vacuum. The overall flow diagram is shown below and was modeled using SuperPro.

Acknowledgments:

Dr. Okos, Professor in Agricultural and Biological Engineering, for help with the formulation of the process and technical knowledge of the equipment Daniel (Sven) Patrick, Graduate Student in Agricultural and Biological Engineering, for help running the extruder and making yourself available when we needed assistance Steve Smith, of Food Science, for use of the pilot plant equipment Dr. James Daniel, Professor of Foods and Nutrition, for use of analysis of our product David Petros, of Food Science, for use of Cereal Milling Laboratory Brad Knapp, of ADM, for general information about soybeans and plant procedures

CAPSTONE EXPERIENCE 2012 Soy Flour by Extrusion

Results:

It was experimentally determined that at lower soybean moisture contents the temperature of the extruder would increase. Higher extruder temperatures correlate to increased oil and water removal from the soybeans. It was also determined that soybeans could be extruded twice, with no negative effects in running the extruder. Thus, the process was created to extrude the soybeans twice, which results in about 40% of the total oil being removed. Given actual equipment sizes, it is best to produce the flour using one equipment line. The total capital investment was determined to be \$1,848,000 and the yearly net profit would be \$4,598,000.

This is the extruder that was used for experiments.

D	uugei morma				
Fixed Capital Investment					
Purc	chased Equipment, delivered	\$348,676			
Purchased Equipment Installation		\$125,523	Economic Sum	mary	
Inst	rumentation and Controls	\$90,656		-	
Pipi	ng	\$174,338	Fixed Capital Investment	\$1,847,982	
Electrical Systems		\$34,868		\$5,571,694	
Buildings (Including Services)		\$101,116			
Yard Improvements		\$34,868	Annual Production (lbs)	10,170,000	
Service Facilities		\$191,772	Price per pound	\$1.00	
Engineering and Supervision		\$111,576	Annual Revenue	\$10,170,000	
Construction Expenses		\$174,338	Annual Net Profit	\$4,598,306	
Lega	al Expenses	\$13,947	Return on Investment	82.53%	
Con	tractor's Fee			0.40	
Con	tingency	\$129,010			
Working Capital		\$261,507			
Tota	al	\$1,847,982			
	Annual Production Cost				
	Raw Materials		\$2,933,868		
	Labor		\$2,0	12,500	
	Utilities			87,520	
	Facility			90,211	
	, Fixed Charges				

uugei morma	uon.		
Fixed Capital Investn			
rchased Equipment, delivered	\$348,676		
rchased Equipment Installation	\$125,523	Fconomic Sum	mary
trumentation and Controls	\$90,656 Economic Summary		
ing	\$174,338	Fixed Capital Investment	\$1,847,982
ctrical Systems	\$34,868		\$5,571,694
ildings (Including Services)	\$101,116		
d Improvements	\$34,868	Annual Production (lbs)	10,170,000
vice Facilities	\$191,772	Price per pound	\$1.00
gineering and Supervision	\$111,576	Annual Revenue	\$10,170,000
nstruction Expenses	\$174,338	Annual Net Profit	\$4,598,306
gal Expenses	\$13,947	Return on Investment	82.53%
ntractor's Fee	\$55,788	Payback Period (years)	0.40
ntingency	\$129,010		
orking Capital	\$261,507		
tal	\$1,847,982		
Annu	al Production	Cost	
Raw Materials	w Materials \$2,933,86		33,868
Labor		\$2,012,500	
Utilities			
Facility		\$390,211	
Fixed Charges	\$47,594		
General Expenses	\$100,000		
Total		\$5,571,694	

Alternative Solutions:

- being used).

Global/Societal Impact:

- method.

PURDUE AGRICULTURE PURDUE UNIVERSITY

Multiple extruders in series could be used to remove a higher percentage of the total oil for use in low fat products. Use Hexane or similar chemical to extract oil from the soybeans and then mill the remains to create a flour (current processing)

Extrusion is a potential method to process soybeans and other grains in third world countries; it is a low energy processing

Extrusion is also more environmentally friendly when compared to the current processing method. The soybean industry uses hexane to remove the oil, which is derived from crude oil.

Purdue University is an equal opportunity/equal access institution