PURDUE UNIVERSITY

Caitlyn Crowley (B.S. ABE), Sarah DeFlora (B.S ABE), Kaneeka Sood (B.S ABE)

Objective:

In recent years, research and development of biodegradable plastics has rapidly grown. Their advantages over other traditional plastic materials are their high tensile strength to weight ratio, *ability to be molded* into various states, *potential resistance* to environmental conditions, *recyclability*, and their potential to *biodegrade*. Our object is to formulate Polylactic Acid(PLA) using a conventional industrial method.

SWOT Analysis	
Strengths	
-Reduce flavor scraping	-
-Stretch ratio is 9:1 to 16:1	_
-Can be run on PET orientation equipment without any	(
hardware modification	_
-Non-toxic product	t
-Sustainability, Environmentally friendly	S
-Can be done in factories on a large scale	-
-Recyclable, Biodegradable	_
-Production only uses about 0.15%	I
of the total corn for grain production in the USA	
Opportunities	-
-More green technology, reducing harmful environmental	_
effects	

-If not recycled, can decomposed

References:

¹ Franklin Associates, LCI Summary for PLA and PET 12-ounce Water Bottles; 2007

² Allied Development Corporation, Beverage Packaging Performance in North America. CSD and Wine Examined; 2009 ³Bol, Elizabeth, Landon Carlberg, Senja Lopac, David Roland. "Continuous Production of Polylactic Acid Utilizing Dextrose from Corn." Cargill Dow LLC, Michigan State University, Georgia Institute of Technology. PowerPoint. 7 May 2004. ⁴Franklin Associates, Final Report - Life Cycle Inventory of 100% Postconsumer HDPE and PET Recycled Resin from Postconsumer Containers into clean recyclecces postconsumer PET containers into clean recyclecces postconsumer PET containers into clean recyclecces postconsumer Containers and Packaging, 2010-revised. PET resin pellets

⁵Nextant Chem Systems., Squeezing Profitability from the PTA/PET Value Chain. Impact of the Latest Technology Advances, Volume 6, 2009. ⁶NatureWorks[®] PLA – Commercial Development of Biopolymers on a World Scale.

⁷ L. Avérous, Polylactic Acid: Synthesis, Properties and Applications. January, 2008.⁸⁸⁸⁵:17:54 PM 8 Ebru Tektemur, Emine Bayraktar, Ülkü Mehmetoğlu, Mehmet Saçak. Department of Chemical Engineering, Ankara University. Melt polycondensation of lactic acid. 2005.

⁹ David E. Henton, Patrick Gruber, Jim Lunt, and Jed Randall, Polylactic Acid Technology, P:529, 2005. ¹⁰Lee, M., Tan, H., Chandrasekaran, M., Ooi, C., Synthesis and characterisation of PLLA by melt polycondensastion using binary catalyst systems, SIMTech technical reports, Vol. 6, P:40-44, 2005.

BIOPLASTICS: PRODUCTION OF POLYLACTIC ACID

Weakness

-To decompose requires a temperature of 284 degrees. -Very few consumers have access to the sort of composting facilities that can recycle PLA

- -High density, High polarity, difficult to adhere without tie layers to non polar PE and PP in multilayer
- structures
- -Limited barrier against moisture and gases
- -Cycle times for injection molding PLA performs are longer than for PET

Threats

- -High demand for corn
- -Competitor plastics are cheaper PET \$.70/lb vs PLA \$1/lb

Process 1. Fermentation
$C_6 H_{12} O_6 \rightarrow \underset{\text{Lactic Acid}}{\overset{0}{\text{HO}}}$
2. Lactide Formation $2 \xrightarrow[H_{d}]{}_{H_{d} \subseteq CH_{3}} \xrightarrow[H_{3}C]{}_{H_{3}C} \xrightarrow[H_{3}C]{}_{H_{3}C} \xrightarrow[H_{3}C]{}_{Lactide}}$
3. Polymerization $ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\$
Polylactic Acid

Design Scale Up

Process Flow Diagram

Catalyst Used: Tin Octanoate

-When Sn(Oct)₂ is used, highest molecular weight is achived in comparison to other catalysts.

-Produces a more durable plastic.

-As average molecular weight increases, resin toughness increases. The same holds true for tensile strength and

environmental stress cracking resistance.

-Almost 100% regeneration

Polymerization

Fermentation

PURDUE AGRICULTURE PURDUE UNIVERSITY

Budget

Equipment Costs (in	Millions)
Compressors	3.86
Exchangers	80.83
Pumps	1.34
Reactors	97.3
Tanks	1.51
Towers	2.47
Vessels	77.3
Total	265

Utility Costs (in Millions)

Equipment	
Exchangers	68.22
Pumps	0.23
Reactors	38.03
Vessels	19.4
Туре	
Cooling Water	13.95
Electricity	0.23
Low Pressure Steam	82.88
High Pressure Steam	1.22
Refrigeration	27.6
Total	126

Production

Making 300 Million Pounds Per Year Profit 300

Future Opportunities for Price Reduction

-using wind energy

-using solar energy

-optimization of process

-increasing demand (projected increase up to 30%)

Sponsor : ABE Dept., Purdue University

