

Introduction

Global and Societal Importance

Beer

•Most popular alcoholic beverage in the United States

•Generates \$61 billion in retail sales per year

•Expected to grow 19% to 73 billion from 2010-2015 Microbreweries

•Mass-produced domestic beer is becoming less popular. •Over the past 5 years, microbreweries have been a growing industry.

Traditional Beer Process

Milling: Cracking the grain.

Mashing: Grains, hot water, and malt* are combined to produce starchy solution called wort. Starches in wort are converted to fermentable sugars.

Straining: Solids are filtered

Brewing: Hops are added mostly for flavor. Solution is boiled for an hour to destroy microbes.

Cooling: The hops are filtered from the wort and solution cooled.

Fermentation: The yeast is added, and the solution mixed for aeration. The fermentable sugars are converted to alcohol and CO_2 .

* Our process replaces the enzymatic activity of malt with fungal enzymes.

Problem and Impact

Our objective is to eliminate the malting process in brewing by replacing the malt with fungal enzymes and non-germinated grains. This is beneficial for energy reduction, process time reduction, and cost.

CAPSTONE EXPERIENCE 2012 **Enzymatic Beer**

Andrew Furrow (BE), John Roesel (BE), Molly Scherer (BE), Aaron Trost (BE)

Lab Experiment

Objective

The goal of the lab experiments were to test if fungal enzymes would act as a viable substitution for malt in the beer making process. The enzymes we used were alphaamylase and gluco-amylase.

alpha-amylase

large amylose small amylose and disaccharides gluco-amylase small amylose and disaccharides ______ glucose

Procedure for Saccharification

- I. Heat water to 155 °F.
- 2. Add oats and stir for 30 minutes.
- 3. Filter the mixture.
- 4. Add varying amounts of enzyme to each pot.
- 5. Stir and maintain a temperature of 145 to 155 °F for 60 minutes to allow the enzymes to convert the starch to glucose.
- 6. Cool and measure the specific gravity.
- 7. Calculate the glucose content of the solution based on
- the specific gravity.

Results

					i	
	Alpha-	Gluco-	Specific	Specific Gravity		
Experiment	Amylase (g)	Amylase (g)	Gravity	(adjusted)	ABV (%)	ABW (%)
1	0.136	0.136	1.018	1.021	2.063	1.635
2	0.068	0.068	1.018	1.023	2.260	1.790
3	0.034	0.034	1.017	1.020	1.965	1.558

The amylases prove to be effective in converting the starch into glucose in our beer process.

Plant Design

Economic Evaluation and Constraints

Our plant design was constrained by energy use. Our goal was to design a process that reduces energy input while producing affordable beer.

Concentration vs. Time Experiment 2 (N=0.36)

			—CellsI (g/L) —Glucose (g/L) —Ethanol (g/L) —CO2 (g/L)
100	150	200	
Time (hours)			

Purdue University is an equal opportunity/equal access institution.