PURDUE UNIVERSITY

Harini Kadambi (BFPE), Jared Schwab (BFPE), Shruthi Shankar (BFPE)

Objective: Design an automated process to encapsulate pancreatic β islet cells in silica gel.

Background: There is currently no cure for Type I diabetes. The only treatment available is the administration of insulin injections. Xenotransplantation of encapsulated pancreatic β -islet cells provides the potential for a long-term cure for the illness; however, the process of encapsulating β -islet cells is only done as a manual, bench-scale process. There is a need for an automated process to increase the feasibility of β islet cell transplantation as an alternative to insulin injections for Type I diabetic patients.

Benefits:

► Long-term insulin independence Simple injection procedure >Immuno-suppressants not required

Terminology:

 \triangleright Xenotransplantation: In this case, refers to cellular therapy via transplantation of β -islet cells from pig pancreas to humans $\gg\beta$ -islet cells: Secrete insulin as a response to glucose levels Encapsulation: Protect living cells in silica monomer gel (sol-gel) capsules in order to prevent destruction and immune rejection >TMOS: Tetramethylorthosilicate (silica monomer used for sol-gel)

Figure 1: Encapsulated P19 Cells

P19 cells are used for experimentation due to the high cost of islets *(Images courtesy of David Jaroch, Purdue University)

Acknowledgements: Dr. Martin Okos, Professor in Agricultural and Biological Engineering, Mentor and Technical Guidance Dr. Jenna Rickus, Professor in Agricultural and Biological Engineering, Project Advisor Dr. Nathan Mosier, Professor in Agricultural and Biological Engineering, Advice on Scale-Up Equipment David Jaroch, Ph.D, Immense Guidance with Experimentation and Laboratory Procedures Guy Telesnicki, Laboratory Technician at Birck Nanotechnology Center Rajtarun Madangopal, Graduate Student, Biomedical Engineering, Procurement of Mimic Cells for Experimentation Mike Green, Senior Research Scientist, VitaCyte LLC, Detailed Explanation and Insight on the Isolation of Porcine Islet Cells

CAPSTONE EXPERIENCE 2012 β-Islet Cell Encapsulation

Total Capital Investment Capital Investment Operating cost Net Operating cost Revenues Cost Basis Annual Rate Unit Production Cost Unit Production Revenue Gross Margin Return On Investment Payback Time IRR (After Taxes) NPV (at 7.0% Interest)

\$149,069,000.00 \$149,069,000.00 \$128,606,000.00 \$128,606,179.00 \$157,500,000.00 \$35,000.00 \$3,674.46 \$4,500.00 18.35% 19.75% 5.06 years 10.70% \$39,583,000.00

Classifica n	tio Hazard	Possible Control Measure
ССР	Microbial Contamination, Damage of Organs	Maintenance of Sterile Conditions
ССР	Optimal Conditions for Storage	Temperature and Preservation Solution
GMP	Contamination of Islet Cells, Presence of Extra-Cellular Mass	Effective Removal of Excess Tissues Sterile Conditions
ССР	Viability	Strict Temperature Control
GMP	Toxic, Flammable	Keep Away from High Heat, Avoid Inhalation, and Skin & Eye Contact
GMP	Purity/Sterility Level of De- Ionized Water	Heat Sterilization
GMP	Caustic	Keep Away from Metals, Provide Exhaust Ventilation, Avoid Inhalation, Ingestion and Skin & Eye Contacts
GMP	Sterility, Fouling (material accumulation)	Use Pharmaceutical Grade Piping systems
ССР	Optimal Pressure	Control systems, Close Monitoring
GMP & CO	CP Sterility and Excess Encapsulation	Control of Residence Time in Bioreactor
GMP	Sterility	Strict Adherence to Pharmaceutical GMP
GMP	Chemical Waste Flammability, Bio-Hazard	Follow Federal and State Regulations

Short Term (Optimize Processing Conditions) >Encapsulation with porcine islet cells > Determine optimum conditions for robustness of capsules Long Term (Product Packaging Method) >Do-it-yourself encapsulation kit for hospitals

> As the saline wash port is opened, the drain port is opened to remove the serum free media. A microfilter is placed at the drain port to ensure the islet cells are not lost. Once the bag is full with the encapsulated cells in saline solution, the IV injection port is connected to the patient.

> > PURDU