-20

Two-Stage Ditch Design at Throckmorton Purdue Agricultural Center (TPAC)

Problem Statement

The Throckmorton Purdue Agricultural Center wants to convert approximately 700 feet of its existing ditch into a two-stage ditch that will be stable, protect resources, and will allow for monitoring to determine the performance.

Profile-View

Descriptive Cross-section

Societal Impact

Delineated Watershed (653 acres)

This center devotes most of its time to researching various agricultural and natural resource practices and this two-stage ditch will give the center another practice to monitor and better understand. Also, specific research analyzing the effects of a two-stage ditch versus a traditional agricultural ditch will be conducted. In addition, it will provide a teaching tool for farmers in the area, students at Purdue University, and local employees in the field of natural resource conservation.

Design Constraints

- 1. Max excavation width constrained by agriculture plots
 - a. West Side: 50 feet
 - b. East Side: 100 feet
- 2. Stability: 10 yr, 24 hr peak discharge when un-vegetated
- Silt Loam Permissible Velocity: 2 ft/s
- Profile Slope: 1st 300 ft = 0.26%; Last 400 ft = 0.6%
- 3. Capacity: 10 yr, 24 hr peak discharge when fully vegetated
 - a. Not to flood out of ditch

Spoil Management

- Location 1: Reapply topsoil to benches
- ➤ Depth of application: 4 inches;
- Location 1.1: Feather remaining on banks
 - **>** Width to spread soil:
 - **✓** East Side: 79.75 ft
 - ✓ West Side: 29.75 ft
- ➤ Maximum Interior Depth: 8 inches
- Location 2: Fill in gully at NW end of ditch

	4.00
Bench Applied	160 cu. yd
Feathered	888 cu. yd.
Transported	346 cu. yd.

Cross-Section View of Soil Feathering Plan

Final Design

- •Bankfull analysis of surveyed data used to determine initial bench height
- •Dimensions:

Jacob Niemeier (ANRE), Katie Losekamp (ANRE)

- Low-flow channel remains untouched
- Channel Depth/Bench Height: 1.8 ft
- Ditch Depth: 4.6ft
- Bench Width: 9.25 ft
- Stability: Flow velocities exceed permissible levels thus erosion control is needed
- Calculated Velocities-
 - ○1st 300 ft: 5 ft/s

Option 1 Plan View

Cross Section

Cross Section

Cross Section 3

- **Last 400 ft: 7 ft/s**
- Capacity: flow depth does not exceed ditch depth

Alternative Solutions

Key:

Magenta: centerline of ditch

Blue: best fit centerlines

Black: Start of bench

Green: End of bench

Cross Section 1 Earthwork Balance: cut 47 sq.ft. Bench Elevation: 95.9 ft 99 98 97 96 96 95

Representative Design Cross-Section

Width (ft)

Option 2 Plan View

Widening of bench due to extreme meandering

Cost Estimate

			Erosion Control Blanket First 300 feet		Erosion Control Blanket Last 400 feet		
	Cut (yd³)	Excavation Cost	Surface Area (yd²)	NAG S- 150 (Max Vel. = 6 ft/s)	Surface Area (yd²)	NAG SC- 150 (Max Vel. = 8 ft/s)	Total Cost
ption 1:	1331	\$4,392	714	\$1,606	952	\$2,570	\$8,569
ption 2:	1404	\$4,633	742	\$1,670	990	\$2,672	\$8,976

Advisor: Dr. Jane Frankenberger, Ph.D., Professor of ABE

Partners: John Witter, Ph.D., Research Assistant Professor at Ohio State University; Stephen Hawkins, Ph.D., Assistant Director ARP, Purdue Agricultural Centers; Jay Young, Superintendent of TPAC; Jeff Cannaday, P.E., NW Area Engineer for NRCS

