PURDUE UNIVERSITY

Mike Sheehan (ANRE-ENRE), Sara McMullen (ANRE-ENRE), Kaileigh Calhoun (ANRE-ENRE)

PROBLEM STATEMENT

The goals of our senior capstone project were two-fold:

- 1. Design a centralized wastewater treatment system for the village of Abwein in West Bank, Palestine
- 2. Provide educational materials on sanitary water practices in the West Bank

The design includes :

 Justifications for the chosen wetland type to remove pollutants from greywater for reuse in agriculture

•Recommendation for the location, sizing and hookups of a centralized wastewater treatment system

The educational materials to be presented to stakeholders include:

Information on the benefits of wastewater treatment

 Suggestions for implementation of low-cost treatment units throughout the region Recommendations for effluent water use Figure 1: Typical topography in Ramallah District, Palestine

Constraints fell under two categories:

. Design Constraints:

- Initial building cost
- •Simplicity of maintenance
- •Availability of building materials
- Initial lack of water quality
- education in villages

. External Constraints:

- •Political Aspects
- •Rationing of Treated Water
- Building of the Treatment System
- •Ability to Contact Stakeholders

BACKGROUND

Project location: Abwein, Ramallah District, West Bank, Palestine •3,119 people, 574 households¹

Literature review:

 Likely influent quality (Beit Doko, Palestine)^{2:} 590 mg/l BOD, 1279 mg/l COD, 1396 mg/l TSS, 6.6 pH •Required effluent quality³: 15-60 mg/L BOD, 200-700 mg/L COD, 50-250 mg/L TSS, 0.5 mg/L DO, 12 MPN/100mL FC, 2-12 NTUs turbidity, 30-45 mg/L total nitrogen, SAR 6, pH 6-9 •Estimated flow⁴: 0.5m³/home/day •Settling tank retention time (treatment of domestic wastewater)⁵: 8 hours •Wetland retention time (Ben-Gurion, Israel)⁶: 8 hours, recycling encouraged to reduce BOD load

Engineering concepts: The engineering concepts used in this design are listed in table 1

Table 1:	Concept
Flow definition ⁹	Q =
Darcy's law ¹⁰	<i>Q</i> =
Manning's equation ⁹	Q =

Corporate sponsor: Aramex NGO partner: Palestinian Hydrology Group (PHG) Academic Partners:

•Dr. Chad Jafvert, Anne Dare, and Amjad Assi, Purdue University Global Engineering Department

•Dr. Marwan Ghanem, Birzeit University Geography Department •Dr. Bernard Engel and Dr. Patrick Murphy, Purdue University Agricultural and Biological Engineering Department

Centralized Wastewater Treatment Design: West Bank, Palestine CAPSTONE EXPERIENCE 2012

Figure 2: Collection of raw domestic greywater for use in

ALTERNATIVE SOLUTIONS

Traditional wastewater treatment plants and constructed wetlands were explored as treatment options. WWTPs were rejected due to high initial and upkeep costs, land use, and building restrictions. The types of constructed wetlands investigated are shown below in table 2:

Table 2: Wetland Type Analysis ⁷									
	Pros	Cons							
Free Surface	Simplicity of Design	Large Surface Area Requi							
	 Extensive Design Information 	High Evaporation Rates							
	Aesthetically Pleasing	Plant/Animal/Insect Infest							
Sub-Surface	Extensive Design Information	Large Surface Area Requi							
	Limits Evaporation	Anaerobic Conditions May							
Vertical Flow	Small Surface Area Requirements	Uncommon Technology (i							
	Limits Evaporation	Anaerobic Conditions May							
	Ability to Remove High Concentrations								

A vertical flow wetland was chosen because low space requirements, climate, and high influent pollutant concentrations were high priority design considerations.

The team originally considered designing an aerobic system (to retain nutrients for agricultural benefits), but changed to an anaerobic system due to lesser maintenance requirements and a nitrogen pollution problem in the area.

Figure 6, right: A possible AutoCAD layout of a 10 home constructed wetland in Abwein is shown in figure 6. The influent greywater will be piped from each home to the wetland with ½ inch PVC pipe, polished, and piped down hill for agricultural use.

in US) ay Smell

ure 4: Three potential constructed wetland types (top to bottom): FSW. SSW. VFW.⁸

potential costly cleanup.

The opportunity to work with international partners and the team's upcoming trip to the West Bank in May, have provided cultural learning experiences and valuable lessons in communication throughout the duration of the project.

REFERENCES

PURDUE UNIVERSITY

BUDGET/PROFITABILITY ANALYSIS

Table 3: Bench Scale Budget						
Category	ltem	Cost	Percent Budget	of	Totals	
Testing	Sand	\$6.88			Total spent: \$569.45	
	Gravel	\$6.32				
	Total	\$13.20	2%			
Wetland Media	Sand	\$38.35			Total allotted: \$800.00	
	Gravel	\$18.42				
	Total	\$56.77	7%			
Wetland Infrastructure	PVC	110.08			<i>9000.00</i>	
	Containers	289.69			Percent	
	Electrical	60.73			spent: 71%	
	Other	38.99			/ 1/0	
	Total	499.48	72%			

This budget does not include the costs for building a bench scale on site in the West Bank or the costs of building the 10 home pilot scale wetland. This is because the prices in West Lafayette, IN cannot be extrapolated to the West Bank directly. Costs and specifics on construction or materials will be obtained in-country.

While the a cost analysis is difficult to do, this design is an affordable step toward preventing cesspool drainage into groundwater systems, helping to mitigate

PROJECT IMPACT

The potential impacts of this design in the West Bank are:

- Simple and low cost wastewater disposal
 - Prevention groundwater degradation
 - •Can replace current insufficient infrastructure
- Increased availability of water, impacting quality of life
 - •Re-use of water in agriculture allows for redistribution of spring and municipal water

This design is only one step towards solving the water security problem in the West Bank. Possibilities for future work include:

- •Testing of the bench scale model in Abwein
- Develop neighborhood and village constructed wetlands in Abwein
- Design wetlands for villages in the area surrounding Abwein
- All research and groundwork conducted by this team is available to GEP to be developed further and potentially implemented in years to come.

the West Bank summary (population and housing)". Palestinian National Authority: Palestinian Central Bureau of Statis "The Use of Treated Gray Water for Irrigation of Rainfed Olives." 2004: 38. Print, 22, 33.

, Regulations, and Legislation for Water Reuse in Jordan. Ministry of Water and Irrigation: Water Resource Policy Support, 2001. iii, 9, A-4.

nodel for analysis of recirculating vertical flow constructed wetlands." ScienceDirect. Dec. (2009): 11. Digital. 2007. Recycled vertical flow constructed wetland (RVFCW)—a novel method of recycling greywater for irrigation in sm

nent Wetlands. 2nd ed. Boca Raton, FL: Taylor & Francis Group, 2009. Print, 5-6.

Inson, B. R., Young, D. F., Okiishi, T. H., Huebsch, W. W., 2009. "Open-channel flow". *Fundamentals of Fluid Mechanics*, 6th ed, 549. W. A, Horton, R. 2004. Water movement in soil. Soil Physics, 6th ed, 78.

Purdue University is an equal opportunity/equal access institution.