PURDUE UNIVERSITY

Khurana, Srishti (BFPE), Wibawa, Evan (BFPE), Zhou, Xun (BFPE), Zhou, Ziyang (BFPE)

Objective

Design an industrial process of manufacturing soy-based blotting paper • Optimize equipment and operating procedures

Minimize production cost and energy usage

Background Review

Product – Naoleym

Naoleym is soy-based blotting paper with **higher oil absorbing ability**. Naoleym is made from all natural product: soy straw, a byproduct of soy production, was used to replace wood or grass fiber to make the paper sheet. Soy proteins are embedded to enhance the oil absorbing and retaining capacity.

Table 1: Percent composition of Naoleym paper	
Component Percentage by Mass	
Soy straw	92%
Potato starch	6%
Soy protein	2%

Table 2: Comparison between Naoleym and Clean&Clean Blotting Sheet			
	Commercialized Blotting Sheet	Naoleym	
Main structure	Polypropylene	Soy straw fiber	
Binding agent	Sorbitol (DMDBS)	Potato starch	
Coloring agent	Zinc stearate, ultramarines	Fabric bleach concentrate	
Coating agent	Mineral oil	N.A.	
Functional agent	N.A.	Soybean protein	

The manufacturing process of Naoleym referred to traditional paper making process which involves three essential parts:

Fiber
Preparatior

Pulping

Sheet Formation

Attended Purdue University Student Soybean Product Innovation Competition (2013-2014) Chosen by Indiana Soybean Alliance for provisional patent (3 out of 15)

Alternative Solutions

Table 3: Final design and alternative solutions			
Unit Operation	Final Design	Alternative Initial Design	
Pulping	Digester plus blow tank	Multiple digesters	
Mixing	Agitator	Mixing pipe	
Binding/Pulp treatment	Potato starch and Calendaring	Glycol	
Sheet Formation	Roller pin	Sheet forming table ; Filter Pres	
Drying	Impingement dryer	Tray dryer	

Listed above are several unit operations needed in the paper making process. Experimental research helped us find the drawbacks of the alternative or initial design of the unit operations which lead us to our final design.

CAPSTONE EXPERIENCE 2014 **NAOLEYM- Soy Based Oil Absorbing Paper**

Table 4 : Optimal design of main unit operations				
Unit Operation	Mass Balance	Dimension	Power	
Digester	In: 164.85 kg soy straw/ hr Out: 65.94 kg pulp / hr	Volume: 2000 L Tank diameter: 1.37 m Tank height: 4.041 m Impeller diameter: 1.347 m	7.5 kW	
Agitator	In: 59.33 kg pulp/ hr 523.43 kg water / hr Out: 571.10 kg pulp solution / hr	Volume: 1085 L Tank: 1.114 m (diameter/height) Impeller diameter: 0.44 m	0.54 kW	
Filter Press	In: 571.10 kg pulp solution/ hr Out: 65.68 kg wet sheet / hr	Area: 0.485 m ²	1.29 kW	
Impingement dryer	In: 65.68 kg wet paper sheet /hr Out: 10.51 kg final paper product / hr	Volume: 38.3 m ³ (L*W*H): 5m*4m*1.9m Fan diameter: 1.558 m	4542 kW	

Engineering Principles

Table 5: Principles and concepts used in unit operation optimization		
Unit Operation	Engineering Principle	
Digester Reaction	 Reaction Kinetics- Shrinking Core Model Heat and Mass transfer 	
Digester Operating Conditions	 Ideal Gas Law for alkali concentration Antoine Equation for Pressure 	
Refining	 Delamination and Hydration of fiber 	
Dryer	 Heat and Mass transfer 	
Filter Press	 Separation 	

Digester Agitator Filter Press

Impingement dryer

Table 6: Market a
Market Size (people
Target market (10%)
Sheets produced
Fixed cost
Total capital investn
Production cost
Variable cost
Retailing price
Breakeven Volume
Breakeven sales
Breakeven year
Return on Investme
(ROI)
MARR
IRR

Table 7: Pr	od
Process	
Straw to Pulp	
Pulp to Paper	
Straw to paper	

Societal & Global Impact

- No negative social, political or environmental effect • There are no global impact found in the making Naoleym.
- Adding value to soy by-product • By producing Naoleym, soy straw would turn into a commodity compound instead of just a waste.
- Safe, all natural cosmetic product • The natural ingredients used in this product let our product be safer to use compared to chemical based blotting paper.

- Water Recycling Huge amount of water is required to produce our product. Due to this, a water recycling unit would be included in the final plant design.
- Energy and cost saving by eliminating coating process According to the experiment, embedding soy protein inside the paper improves the oil absorbing properties.
- Saving Trees Our product gives alternative ingredients to paper making process to replace trees.

Economics

Sustainability

INDIANA SOYBEAN ALLIANCE

Sponsor- Indiana Soybean Alliance

ENGINEERING

PURDUE