

Sarah Cryer (BE), Mohammed Ghazali (BE), Suraj Mohan (BE), and Alexa Petrucciani (BE and Math)

Background Statement of Problem:

- Fossil fuels are in limited supply, which are the main sources for hydrogen production.¹
- Hydrogen demand is expected to increase to replace the increasing petroleum demand as a renewable energy source²

Objective:

To develop a microbially-based manufacturing process for producing hydrogen gas on a commercial scale that is:

- robust
- economically feasible
- environmentally

Global and Societal Impact:

- Hydrogen gas as a renewable resource will be important for a society with increasing energy needs and decreasing fossil fuels
- Produces zero greenhouse emissions
- The most abundant element in the known universe
- CO₂ emissions from biomass consumption nearly equivalent to CO₂ consumed through source biomass growth⁴
- biomass considered a carbon-neutral energy source
- Life Cycle Assessments show that CO₂ emissions from hydrogen producing processes are minimized³
- As long as bacterial culture is preserved and biomass input is available, process can be maintained indefinitely

References:

- 1. Energy, U. S. D. o. (2017). Alternative Fuels Data Center: Hydrogen Production and Distribution. Retrieved from https://www.afdc.energy.gov/fuels/hydrogen_production.html 2. World Hydrogen: Freedonia Focus Reports June 2014 (pp. 1-30, Rep.). (2014). Freedonia.
- 3. Dincer, I., & Acar, C. (2015). Review and evaluation of hydrogen production methods for better sustainability. International Journal of Hydrogen Energy, 40(34), 11094-11111.
- 4. Biomass and the Environment. (2018, March 28). Retrieved from https://www.eia.gov/energyexplained/index.cfm?page=biomass_environment

it tion	Optimization Parameter	Minimized Parameter
ng	Volume	Operating Cost
tation	Fermentation time, tank volume, glucose concentration, and initial cell concentration	Material Cost and Operating Cost
ation	Chamber Area	Capital Cost
ation	Separation Efficiency	Capital Cost
ging	Pressurization	Capital Cost and Operating Cost