PURDUE UNIVERSITY

Katie Carnahan (ASM), Tyler Vigar (ASM)

Introduction

Problem Statement

 \succ Identify a system that automates the open/close motion with the push of a button for the Case IH Magnum series tractors.

Background

> New tractor designs are creating limitations of the current gas strut opening/closing system, in order to eliminate limitations a new design idea is required and an automated solution will be implemented.

Design Criteria

- Target open/close time should 10 to 20 seconds
- Must operate on a 12 volt circuit
- Should meet IP68 rating
- Operating temperatures from -40°C to 125°C
- Support a hood weight of 1295N

Constraints

- Must fit in currently available space
- Must maintain minimum opening angle of 25°
- Must withstand high ambient temperatures
- Must maintain user safety

Alternate Solutions

High Torque Rotary Motor

- Advantage: Compact
- Disadvantage: Intricate opening mechanism

Hydraulic Cylinder

- Advantage: Very robust and strong
- Disadvantage: Additional hydraulic capabilities needed

Air Cylinder

- Advantage: Simplicity of system
- Disadvantage: Additional air compressor system required

Linear Actuator

- Advantage: Simplicity and ease of compatibility
- Disadvantage: Product Capability

Sponsor: Ken McCabe (CNH) Doug Waco (CNH)

Technical Advisor: Dr. Daniel Ess

CAPSTONE/SENIOR DESIGN EXPERIENCE 2018 **Hood Latching Mechanism** Improvement G '

Design #1

- Gas Strut Replacement
- > Force Calculations with Excel Tool

- Actuator Sizing
- Insufficient force capabilities

INPUTS				Case New Hoo	d	
	X Component	Y Component		129	5 Newtons	
Force Triangle	0	52	mm	COG	(1621,-598)	
	474	0	mm	Fixed End	(383, -185)	
Moving End	847	-133	mm	Moving End	(847, -133)	
COG	1621	-598	mm			
Hinge	0	0				
Actuator Retract	. <mark>667</mark>	mm				
Acuator Extend	946	mm	-	Force Triangle		
Actuator Force	13600	N	_			474
Hood Weight	1295	Ν				
CALCULATIONS	Angle (Lifting)	6.261	degrees			
	Y Force	1483.085	N			
		12510 002	N			
	X Force	13518.893	ł · · · · · · · · · · · · · · · · · · ·			
	Actuator Stroke		mm	Moment Balar	nce	
		279		Moment Balar	nce	•
	Actuator Stroke	279	mm degrees	Moment Balar	nce Hinge	
RESULT	Actuator Stroke Angle(Hood)	279	mm degrees	Moment Balar		
RESULT	Actuator Stroke Angle(Hood)	279	mm degrees N	Moment Balar		2478.4

Linear Actuator (\$150 X 2)= \$300

Design #2

Single Actuator in Available Space

- Modeling of space available for actuator
- Available mounting bracket is available in the space allotted for the design
- There is insufficient space for actuator with the required stroke length

Linear Actuator (\$150) + Steel (\$21/sq. ft) = \$171

Instructors: Dr. John Lumkes Acknowledgements: Mr. Brent Gettelfinger Mr. David Wilson

Purdue University is an equal opportunity/equal access institution.