

Francesco Leschiera (Mechanical Engineering), Jeffrey Kuhn (Agricultural Engineering), Jiongyu Sun (Agricultural Engineering), and Marcos Ivan Mireles Palma (Mechanical Engineering)

CENTER FOR COMPACT AND EFFICIENT FLUID POWER A National Science Foundation Engineering Research Center

Vision and Ideas

This vehicle was designed to meet two objectives: to compete the NFPA Fluid Power Vehicle challenge and to be a competitive addition to the off road vehicle marketplace.

Vehicle performance

- Maximum Speed 5.82 m/s
- Boosting Distance 244 m

Key Features

- Light Weight 128.5 kg
- Internal Oil Reservoir
- Aluminum-Carbon Fiber Accumulator
- Energy Storage and Regeneration System
- Electronic control System

Hydraulic System Design

Hydraulic Circuit Layout

A hydraulic circuit layout was developed to describe the working principle of the o hydraulic system.

Layout of Hydraulic Circuit

Four Operation Modes

- Pedaling Mode
- Charging Mode

Boost Mode

Regeneration Mode

- **AMESim Simulation**
- AMESim Simulation Models

Numerical Optimization

AMESim simulation circuit layout

Controlled regeneration

Components Selection

The components of the hydraulic system are selected base on the simulation results comparing the performances of piston vs. gear pumps and motors.

Scoring Ratio

4 Combination cases compared Pump Shaft Speed Max Speed

Hydraulic components selection Linear velocity between 4 cases and corresponding performance

Frame Features

Original design

Internal oil reservoir

Triangular structures

Cost Analysis

Prototype Vehicle

Subsystem	Cost [\$]
Frame	297.27
Gear Boxes	384.18
Bicycle Parts	238.54
Hydraulic Circuit	790.00
Pumps & Motors	4035.65
Electronic Circuit	730.52
Sensors	355.20
Donated Parts	4951.20
Total	7911.27

Cost Analysis without Donation from Sponsors

Total cost with donations: \$2960.07 **Total cost without donations: \$7911.27**

Mass Production

Basic Model	
Shimano Alfine 8 Speed Gear System	\$ 328.92
Simple Model	
Shimano Alfine 8 Speed Gear	
System	\$ 328.92
Electronic Control System	\$ 730.52
Total	\$ 1,059.44
Premium Model	
Shimano Alfine 8 Speed Gear	
System	\$ 328.92
Electronic Control System	\$ 730.52
Energy Storage System	\$ 245.68
Total	\$ 1,305.12
-	

Shimano Alfine 8 Speed Gear System	\$ 328.92
Electronic Control System	\$ 730.5
Energy Storage System	\$ 245.6
Regeneration System	\$ 530.2
Total	\$ 1,835.3
Platinum Model	
Shimano Alfine 8 Speed Gear	
System	\$ 328.92
Electronic Control System	\$ 730.52
Energy Storage System	\$ 245.68
Regeneration System	\$ 530.25
Custom Paint Job	\$ 100.00
Total	\$ 1,935.37

Electronic Control System

- Arduino control
- Bluetooth connection Phone App interface
- Vehicle data monitoring
- Localization
- Gear shifting
- Valve control

General connection between devices

Phone app homepage

Mechanical System Design Frame FEA

- Yield Stress 55 MPa (Al 6061 weld)
- Max. Deformation 0.2 mm
- Safety factor 1.6

Fatigue analysis

Lessons Learned / Conclusion

- The FPVC provides college students a chance to go deeper in fluid power. After this challenge, we gained experience both in theoretical knowledge and industrial designs
- Our aim to design a product that could be successful in the free market is achieved. We believe the Hydro-Cruiser is optimally designed weight, speed, and efficiency

Sponsors

Danfoss Power Solutions Parker Hannifin Sun Source **Eaton Corporation** Lube-Tech

Steelhead Composites MiSUMi Casappa Arduino HydraForce

Technical Advisor:

Dr. Andrea Vacca Professor of Mechanical+ Agricultural & Biological Engineering

Instructors:

Dr. John Lumkes Dr. Robert Stwalley Dr. Bernie Engel Mr. Anthony Franklin Mr. Scott Brand

Acknowledgements: Josias Cruz Gomez Riccardo Bianchi David Wilson Ernie Parker Lynn Beyer

Purdue University is an equal opportunity/equal access institution.