PURDUE UNIVERSITY

Zachary McCrea (CBME), Natdanai Itthipalkul (PPE), Austin Cannella (CBME), and Sarah Kilhoffer (CBME)

GOAL, OBJECTIVES, AND IMPACT

Goal: To create L. rhamnosus probiotic supplement with viability of 10⁹ cfu/pill. **Objectives:**

- Grow *L. rhamnosus* with alternative media to 10^7 cfu/mL.
- Concentrate and purify *L. rhamnosus* to 10⁹ cfu/g.
- Reduce fixed and variable cost of operation in order to develop and grow a profitable business.

Impact: Development of high viability, low price probiotic capsule as a nutritional and preventative dietary supplement.

MARKET AND MARKET ANALYSIS

- Open global market, projected to grow at 7.4% CAGR through 2020
- The target demographics are millennials and generation X, 43% of population
- Fragmented market with top 5 competitors producing less than 40% revenue

MORPHOLOGICAL ANALYSIS

	PROCESS	EFFICIENT OPERATION	LOW COST	HIGH CELL COUNTS
-	Goat's Milk		i ji	
Fermentation	MRS agar			
/ Media	Goat's Milk + 3% WPC			
	Whole Milk		1 1	
	Centrifugation	EFFICIENT OPERATION	KNOWLEDGE	LOW COST
	Ultrafiltration		i i	19 A
Bioseparations	Membrane Filtration			
Fermentation of Probiotics	Spray Drying	KNOWLEDGE	LOW TEMPERATURE	HIGH CELL COUNTS
Drying	Tumble/Pan Drying		1 1	
\backslash	Freeze Drying		•	
	Mixing	KNOWLEDGE	LIQUID-LIQUID	LOW COST
* Coating	Pan Coating			

OPTIMIZATION

Unit Operation	Optimization Variable	Minimized Parameter	
Heat Exchanger	Water Temp.	TAC	
Centrifuge	Diameter	TAC	
Mixer	Tank Diameter	TAC	
Freeze Dryer	Drying Area	TAC	

References:

(1) Probiotics: In Depth. (2016, October). Retrieved November 15, 2017, from https://nccih.nih.gov/health/probiotics/introduction.htm.

(2) Probiotics Market Size, Market Share & Forecast, 2017 – 2024. (2017, September). Retrieved April 12, 2018, from https://www.gminsights.com/industry-analysis/probiotics-market.

(3) Regier, M., Knörzer, K., & Erle, U. (2004). Mikrowellen- und Mikrowellen-Vakuumtrocknung von Lebensmitteln. Chemie Ingenieur Technik, 76(4), 424-432. doi:10.1002/cite.200400066.

CAPSTONE/SENIOR DESIGN EXPERIENCE 2018 Goat's Milk Derived Probiotics

PROCESS FLOW DIAGRAM WITH COMPOSITIONS

Stream number	1	2	3	
lass flow (kg/hr)	1253.7	1253.7	166.3	
Protein (%)	3.39	3.0	22.5	
Fats (%)	4.0	4.0	2.9	
Ash (%)	0.8	0.8	6.0	
Water (%)	87.0	87.0	32.7	
Carbs (%)	4.8	4.4	30.1	
Cells (%)	0.01	0.8	5.8	

and Dr. Haley Oliver

Agricultural Biological EER N G N

G

ECONOMIC SUMMARY			
	TCI (million \$)	23.46	
Total Revenue	TPC (million \$/year)	9.42	
Total Cost	Fixed Cost (% TPC)	11.3	
Total Profit	Production (10^5 bottles/year)	7.69	
0000 600000 800000 10000000 mber of Bottles Produced	Product Cost (\$/bottle)	12.24	
Tetal Bauanua	Product Price (\$/bottle)	20	
Total Revenue Total Product Cost	Total Revenue (million \$/year)	15.39	
	Total Profit (million \$/year)	4.42	
0% 50% 60% 70% 80% 90% 100% Process Efficiency	Breakeven Point (years)	3.93	
		J	

SWOT ANALYSIS

Weaknesses	Opportunities	Threats
High cost of downstream processing (93% of total equipment cost) Reliance on robustness of single strain <i>L.</i> <i>rhamnosus</i>	 Expanding global probiotic market (\$46.6 billion in 2020) Large future product pool, including other probiotic strains and prebiotics 	 Improvements in unit operations with lower cost (i.e. spray drying) Subject to increased industry regulation in the future

ASSESSMENT AND FUTURE RECOMMENDATIONS

Investigate enteric coating, encapsulation techniques, and excipients to

Vary fermentation media and times to maximize cell counts (while

Experiment with *L. acidophilus* and *L. casei* to optimize fermentation

Incorporate alternative unit operations (i.e. spray drying and ultrafiltration) Determine optimal location based off manufacturing and distribution costs Investigate potential for future growth in the Food & Beverages and