PURDUE **UNIVERSIT**Y

Zach Carter (AE), Noah Hoek (ASM), Jentry Flesher (ASM), and Josh Schafer (ASM)

Statement of Purpose

This team worked to design a John Deere adjustable corn head snout that will handle down corn that is laying on the ground and also retract linearly 150mm to better harvest standing corn, all while maintaining a simplistic design that will allow current crop flow with the least amount of parts, manual control, and minimal added weight to the corn head, improve marketability and add profitability.

Background on Problem

- Deere currently has the longest snout on the market
- Long snouts provide issues like "plow effect"
- Long snouts push over corn plants in the next row on contours
- No adjustable snouts on the market
- The snout must linearly retract 150 mm, then, re-extend to original position

Design	Eval	uations
--------	------	---------

Locking Mechanisms							
Factors	Material Flow	Functionality	Cost	Availability	Simplicity	Asethetics	Score
Weight	2	2	1	2.5	2	0.5	
(1) Pin	4	5	4	5	2	2	39.5
(2) Spring Loaded	5	7	3	6	7	5	58.5
(3) Button	6	5	6	1	6	4	44.5
Track System							
Factors	Material Flow	Functionality	Cost	Availability	Simplicity	Asethetics	Score
Weight	2	2	1	2.5	2	0.5	
(1) Zach's Design	5	7	7	8	5	5	63.5
(2) Jentry's Design	3	2	4	6	5	4	41
(3) Josh's Design	5	5	2	6	8	7	56.5

Impact and Sustainability

- Will provides competitive advanta marketplace
- No FEA analysis required for this p
- Possible residue build-up in track

CAPSTONE/SENIOR DESIGN EXPERIENCE 2018 Adjustable Corn Head Snout

lt)es A tl Cor
D H C
ina Two Ne Use Red Un Allo Ful

age in prototype	 Tot Est \$12 \$19 Per 	nomic Analysis al Cost is \$167.33 imated Price is \$600 2.33 in additional cost yields 50 in revenue per snout. rcent Profit: Conventional Snout – 190%, Adjustable Snout - 260%
or: In	structors:	<u>Acknowledgem</u>

Dr. John Lumkes Dr. Robert Stwalley Dr. Margaret Gitau

ments: We would like to thank our sponsor, Dennis Silver, and the following people for their help: Dr. Lumkes, Scott Brand, Dr. Bob, Dr. Saraswat, Carol Weaver

ternative Solutions

sign 1

A Track incorporated in hinge of the snout

ncerns:

Hinge functionality

- Design complexity
- Hinge strength after modification
- Crop residue build up in track

Design 2

Concerns:

- unattached
- drop the pins in the field

al Design

vo piece snout with incorporated track

efits:

ses two concepts from earlier designs educes complexity of modifications nder 1 minute transition

lows crop material to flow

lly retracts 150 mm

Economic Analysis			Fu
Quantity	Part	Price	
1	Pin	\$7.10	•
1	Spring	\$0.03	
1	U Bracket	\$1.16	•
1	Z Bracket	\$1.69	
1	Plate	\$1.61	
2	Bolt	\$0.26	
4	Washers	\$0.03	•
2	Locknut	\$0.10	
1	Plastic Snout	\$75	
Total Raw Material Cost		\$87.33	
2	Labor	\$40	
Total Cost		\$167.33	

PURDUE AGRICULTURE PURDUE UNIVERSITY

Two piece snout, secured by a pin

The two pieces of plastic must be

Time consuming field adjustment Having pins poses an opportunity to

uture Recommendations

John Deere will manufacture a new 2 piece mold

The design is a prototype, John

Deere will need to conduct FEA and field testing

John Deere will need to allow the farmer to adjust from the cab

Install a rubber flap to keep material from going under the 2 pieces.

ENGINEERING

PURDUE