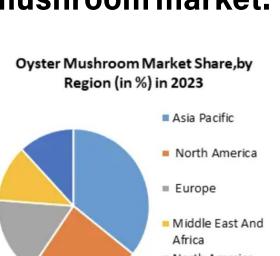
SENIOR CAPSTONE/ SENIOR DESIGN EXPERIENCE

Oyster Mushroom Cultivation

Dev Patel¹, Michael Heraty¹, Josh Hardy¹

¹Biological Engineering, ABE Purdue University

Batch B-Box


S-104 (+)

Agricultural and Biological Engineering

Background

Growing demand for healthy, sustainable food drives attractive oyster mushroom market.

Oyster Mushroom Market Size Oyster Mushroom Market to grow at a CAGR of 7.6 % during 2024-US\$ 84.33 US\$ 54.34 Oyster Mushrooms Market Size in billion Oyster mushrooms are prized for their delicate flavor and versatile Oyster Mushroom Market

Residential

culinary applications,

boasting a mild, nutty

taste and a firm, meaty

texture.

BRANDING FOR

CONSCIOUS

CONSUMERS

The Green Yard

Monaghan Group

Objective

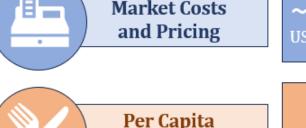
Our oyster mushroom production plants and business model prioritize profitability while minimizing environmental impact through efficient operations and sustainable sourcing practices.

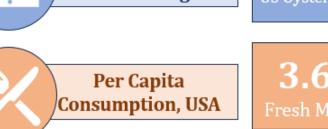
Ethics, Competitors, US Market

RESPONSIBLE

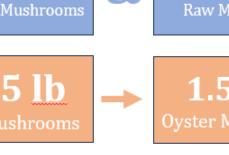
MATERIAL

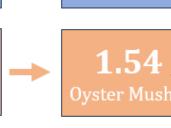
PRACTICES

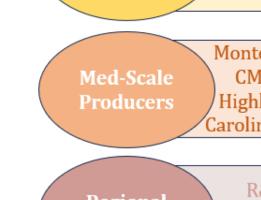












INNOVATIVE

CULTIVATION

TECHNIQUES

CMP Mushrooms

Smallhold Ellijay Mushrooms

Experimental design

Process Overview:

- Three major unit operations:
- Sterilization
- Growth & Harvest
- Composting
- **Sterilization:** Find the optimal method and conditions for an autoclave to effectively sterilize substate.
- **Growth & Harvest:** Determine the optimal environmental and timing conditions to harvest mushrooms at a most profitable rate in terms of yield, sales, and product quality.
- **Composting:** Determining the ideal nutrient concentrations to ensure healthy grow of microorganisms within the mixture

Production Process

Harvest Scheduling

Unit Process

Composting

Operation Data

3 flush cycles harvested/batch

1 week fruiting between harvests

~62.5% of product harvested in

~25% of product in flush 2

Incorporating mushrooms from

harvesting to reinvigorate the

• Three different phases: Mesophilic,

Thermophilic, Maturation and cool-

4 Identical Production Rooms

8 batches/yr per room

32 batches/yr total

Plant Operation: 360 days/yr

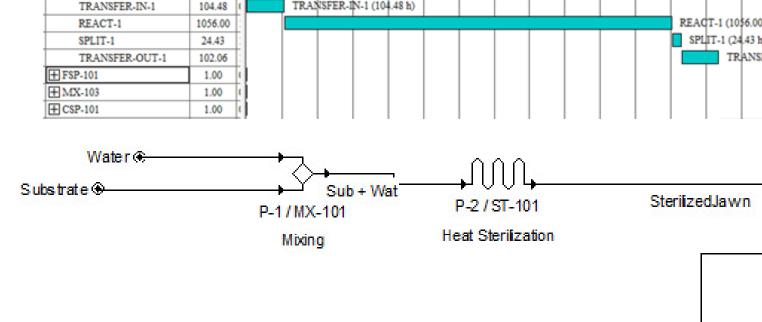
• \$1.07/kg mush | \$0.18/kg comp

Labor Costs per kg product

Batch Time: ~44 days

8 hrs labor/day

following compost batches


Water from sterilization

~12.5% of product in flush 3

242 man hours/flush per room to

harvest (8hrs/person w/ 32 ppl)

Harvest Data Estimates

Sterilization

CHARGE-1

- Output: Sterilized wheat straw for various
 - **Resources**: 1535 tons wheat straw, 4725 m³ water, 8.5 kW/h electricity/ton, 48,750 kg
- Soaking: 24-hour soak in 50-60°C water. Sterilization: Autoclaves at 15 psi (121°C) for
- Quality Assurance: Second 45-min sterilization cycle.

Mixing

- **Process Scheduling** Used to mix sterilized substrate and solid mycelium spawn
- Streams combined in growth trays for placement in growth rooms **Stream Composition**
- 18.9% Spawn (w/ mycelium)
- 81.1% Sterilized substrate (dry)

Growth

Growth Scheduling

- Incubation period: ~23 days Fruiting period: ~21days
- Cleaning period: 1 day (automated)

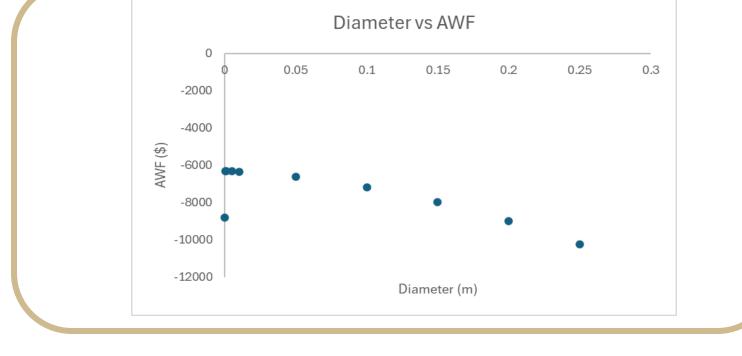
Operation Conditions Temperature: 19°C

- Humidity: 90%

Airflow Exchange: 9 times/hr

Total Production Rate Power Consumption 1,392,640 kg/yr mushroom 43,675 kW/year

Waste Production Raw Material Requirement


1,392,640 kg/yr dry substrate	1,443,914 kg/yr water
324,563.5 kg/yr spawn	1,732,919.15 kg/yr residua
51.253*10 ⁶ kg/yr water	

Process Optimization/Controls

Batch Size/Autoclaves

1,637,772 kg/yr compost

Optimal batches: 10 Optimal batch size: 0.5 m³ **Optimal autoclaves: 12** Max AW: \$4,924,308.80 Controls: RTD, Pressure Transducer, Valves, Boiler, Pump Motor, Proximity Sensor

Water Recycling

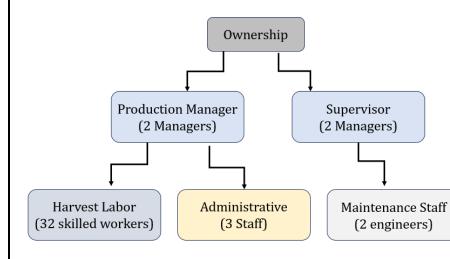
Reuses: 86,990.32 L/day Initial investment: ~\$700,000, yielding quick savings. Components: pre-filtration, ultrafiltration, UV disinfection Benefits: Water efficiency streamlined operations, sustainability.

Org structure

kg/batch

1,601,668

43,520


10,142.61

45122.32

54,153.75

43,520

51,180

Labor Breakdown:

Good Mushroom

Process Recipe

Sterilization

Growth & Harvest

Composting

Water

Substrate

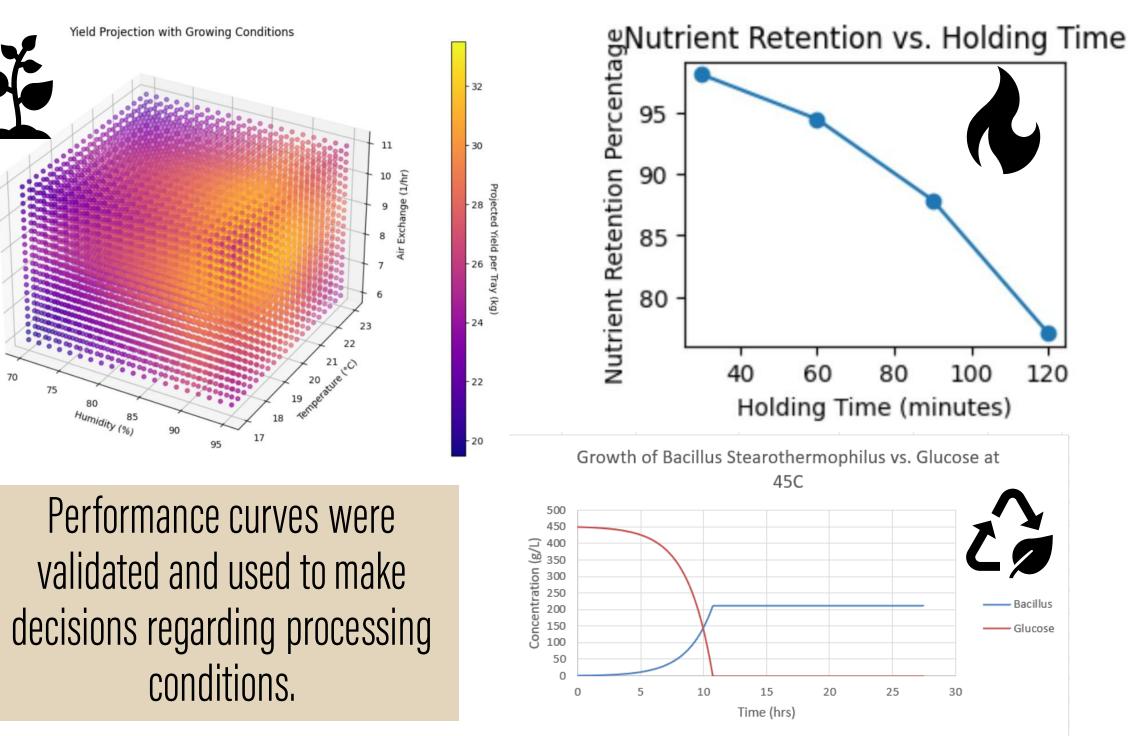
Spawn

Waste Water

Residual Waste

Mushroom Product

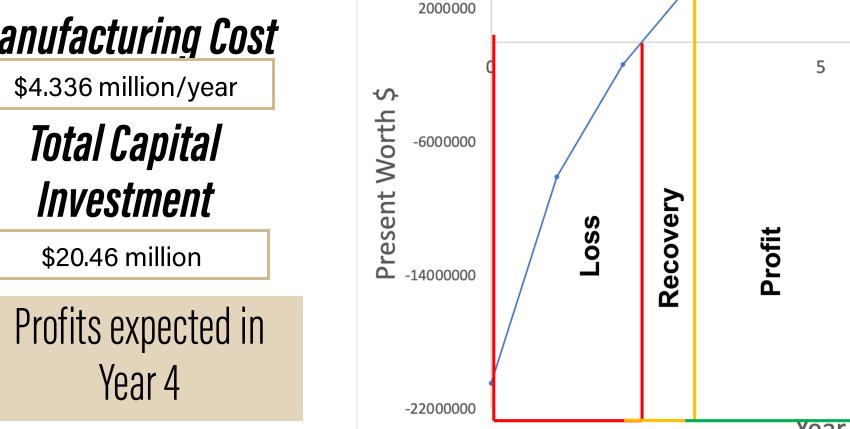
Compost Product

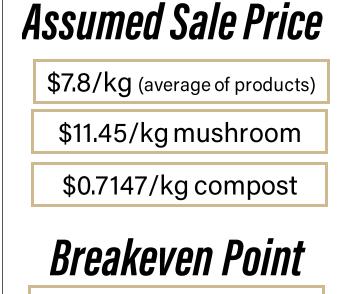

Energy

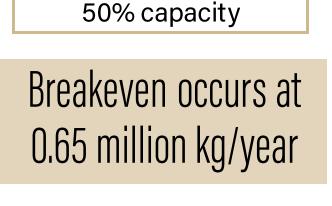
Waste Product

Stream Output

- Harvest Labor: \$52.94/hr
- Administrative budget: \$179, 091/yr Supervisor & maintenance: \$305k/yı
- Manager budget: \$179,091/yr


Experimental Results




Economic Analysis

Profitability over Time

Future Improvements

cycling enhances mushroom production

lternative Substra impact on Yield

Sterilization chemical/hea exchanger)