SENIOR CAPSTONE/ SENIOR DESIGN EXPERIENCE 2024

Instructors: Dr. Martin Okos & Daniel Hauersperger Acknowledgements: Mandy Limac, Carol Weaver, Luke Perreault, ABE Faculty & Staff

-11	ment Occupancy Chart /															
Z	'oom to 👻 🔍 Zoom I	oy 🔻 💽														
mandinha nu	decell FSP-101 MX-101 FSP-102 MX-102 fermentation STG01 > fermentation RVF-101															egend B# 1 B# 2 B# 3
	h	16	32	48	64	80	96	112	128	144	160	176	192	208	224	 B # 4
	day	1		2	3		4	5		6	7		8	9		

Process Stage	Selected Technology	Benefits					
Decellularization	Vertical agitator	Minimize shear stressMinimize power consumption					
Fermentation	Airlift bioreactor	 Minimize cost Low mechanical stress on cells Control over fermentation parameters 					
Harvest	Vacuum filtration	 Minimize cost High degree of temperature control 					
Texturization	Single-screw high-moisture extrusion	 Simple design Texturization of final product Minimize cost 					

Group 4: Morgan Gyger¹, Alexis Lowe¹, Rebecca Mold¹, Ellie Tanner¹

¹Biological Engineering - Cellular and Biomolecular

Figure 1: Decellularizing broccoli buds allows them to serve as an empty, fibrous scaffold for cell adhesion.

Stage 2: Fermentation

Figure 2: Fermentation step in which cell growth, adherence, and attachment to the scaffolding occurs. (A) Empty scaffolding prior to growth. (B) Populated scaffolding in media suspension.

Figure 3: (A) Vacuum filtration removes excess fermentation media from the scaffolding. (B) Cell growth evidenced by change in color and increase in size.

Figure 4: Diagram of food extrusion system showing flow of product through barrel and external heating elements.

Lowering Consume Cost

Optimizing Texture

Safety

Original Decellularization Report: Thyden, R., et al. (2022). An Edible, Decellularized Plant Derived Cell Carrier for Lab Grown Meat. Applied Sciences, 12(10), 5155–5155. DOI: 10.3390

Agricultural and Biological Engineering

Figure 7: Optimized 25% moisture content, 4131 seconds of filtration.

mechanical product texturization. Optimal extruder has 5.8 cm barrel diameter and operates at 60.5 RPM and 197°C.

Business Plan					
	Original	Optimized			
al Investment	\$1,728,423	\$1,728,423			
duction Cost	\$1,986,062,000	\$1,619,016,978			
al Production	2,600,000 kg	2,600,000 kg			
per kg	\$900	\$775			

Conclusions & Future Work

) er	Collaborate with other industries to sell waste products Utilize cost-effective alternative ingredients Minimize use of chemical inputs
g	Conduct consumer research to determine ideal texture to optimize extrusion
	Evaluate washing to ensure trace chemicals do not remain in the final product