SENIOR CAPSTONE/ **SENIOR DESIGN EXPERIENCE** 2024

Objective

Crustacean Bioplastics is looking to divert **17.6 million tons** of raw chitin (shell) waste and turn it into a renewable, green plastic alternative. Chitin is fire resistant, has strong tensile strength, and low cost of production. It has several environmental benefits, including biodegradability and a lower environmental cost of production, such as reduced carbon emissions.

Problem

Plastic is the largest contributor to pollution worldwide but is essential to today's world.

> - 400 million tons per year in 2024 - 1.1 billion tons per year by 2050

Public focus on plastic waste has spurred a wave of investment in renewable bioplastics.

Figure 1: Increase in chitin, chitosan based plastic budgets, patents over time (Amiri, 2022)

Evaluation of Alternatives

The single largest barrier to bioplastics emergence in the single use plastic market is their increased cost. Plastic bags cost about \$2/kg. Our bioplastics, while more expensive than that at \$13.17/kg, become a much more economic option when you consider that the cost of waste management for plastic bags brings the true cost up to \$36/kg.

We would like to thank the ABE department, Dr. Martin Okos, Dan H., and Mandy L. for their support in designing, creating, and finalizing this product.

Crustacean Bioplastics

Ian Ophaug-Johansen¹, Madelyn Whitaker¹, Autumn Wuebben¹

¹Biological Engineering: Cellular and Biomolecular Engineering, Purdue University

Process Design

Experimentation

Table 1: Variables altered for designing the bioplastic. Where relevant, values are in reference to 5g of chitin.

					 R
Unit Operation	Variables	Low	Center	High	
					1
Grinding	Water Added	2.5 mL	5.0 mL	7.5 mL	
Deacetylation	Time	40 min	50 min	60 min	2
					2
Deacetylation	Temperature	55°C	65 °C	75 ℃	Тс
Filtration	Filter Pore Size	15 µm	-	45 μm	R
Plasticizing	Glycerin Concentration	15%	20%	25%	1
					6
Plasticizing	<i>Glycerin Volume</i>	4.5 mL	5.0 mL	5.5 mL	
					2

Impact and Sustainability

In-stream, from washing waste	200-400 psi	Brine out-stream, to boiler	Boiler	Boiler or s
	14.7 psi		Recycle out-st back to deacet	

the process gives an *annual savings of \$1,154,000*.

Agricultural and Biological Engineering

insects

Special acknowledgements go to Autumn Wuebben for successfully completing this project with a shellfish allergy.