SENIOR CAPSTONE SENIOR DESIGN EXPERIENCE 2024

Objective

To make use of a high production but underused fruit in the wine industry with a focus on using byproducts of creation within and in alternative products.

Market Analysis

The US produces about 156 million bottles of sparkling	Competing Brands	
	Korbel	\$19.99/L
wine each year, while Champagne alone	Mamamango	\$21.32/L
shipped 326 million	Our Wine	\$20/L
bottles in 2022.		

Ethics and Trends

Social: Increased Consumption of Mangoes Ethics: Decreasing waste of mango over-production Enviornmental: Use of excess CO2

Design Considerations/Alternatives

Pulping

- Automated vs hand washing
- Peeled vs unpeeled
- > Type of juice press

Sterilization

- > Chemical vs. Heating
- ➢ HTST vs. LTLT
- > Water Usage

Fermentation

- > Type of Yeast Culture
- Temperature and pH
- Fermentation Time

Carbonation

- Amount of carbon dioxide.
- Carbonation method
- > Temperature of wine

Instructor: Dr. Martin Okos Technical Advisors: Dr. Martin Okos, Daniel N Huaersperger, Mandy Limiac

Carbonated Mango Wine

George Francis¹, Blaine Ballared², Raj Balasamay³, Sebastian Wojcik⁴

¹Biological Engineering; ²Biological Engineering; ³Biological Engineering; ⁴Biological Engineering

Primary Unit Operations

> Pulping

- > 3 phases
- Mango washing
- Removing Mango Peel
- > Mango Juice Extraction

Fermentation

- Mix of Yeast Cultures
- > Acidic pH and lower Temperature
- Ferment without mango peels or solids

> Sterilization

- Steam/pH-Based
- Focus on bottles
- High temperature, Short Time

Carbonation

- Collection and compression
- Forced Carbonization

Experimentation

ABV 1 Week: 3%

Mango Juicing Base: 58% 2 Weeks: 5% Heating 37%

Considerations Ripeness of Fruit **By-Product Uses**

For purposes of evaluating scheduling, the continuous process was mapped as a batch process: Batch Time: 57.53 hours Batch Size: 600 kg mangoes

Semi-Continuous Annual Batches: 1729 batches per year

Process Overview

Process Scheduling and Optimization

Single Batch Optimized Schedule

Controls

Pulping

- PID controlled water
- heater/flowrate
- Photoelectric sensor for
- automated peeling
- Continuous Brix Sensors

Sterilization

- PID controlled flow rate
- IR Sensor for temperature

Globe valve for flowrate

Fermentation

PID controlled flow rate of inlet mango juice

(0.25 h), Pasteurization

- Thermistor for temperature of in-process batch
- ISFET sensor for pH

Carbonation

- PID controlled flow rate
- Digital temperature sensor
- Gauge pressure sensor

Optimization

- Pulping > Optimizatio Rate
- > Optimum F
- Annualized
- Sterilization Optimization Parameter: Temperature
- Optimum Temperature : 120 °C
- Annualized Cost: -\$3,099,578

Future Recommendations

- Research and Devlopment Increasing juice yield > Optimization of ripeness Alternative fruits

- > Sustainability > Utilizing carbon dioxide for factory farming of mangoes
- Increasing Profits > Use of peels for new products Use of seeds in factory farm

Acknowledgments: Dr. Martin Okos, Daniel N Hauersperger, Mandy Limiac **Department of Agricultural and Biological Engineering**

Agricultural and Biological Engineering

Economic Analysis

on Parameter: Feed	Fermentati ➤ Optimiza Tempera
Feed Rate: 361 kg/hr	> Optimur
Cost: -\$1,242,515	> Annualiz

- tion zation Parameter: rature
- Im Temperature: 25 °C
- lized Cost: -\$6,791,467
- Carbonation Optimization Parameter: Amount
- Optimum Amount: 4 g/bottle
- Annualized Cost: -529.20\$