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ABSTRACT OF THE DISSERTATION 

DESCRIBING AND MAPPING THE INTERACTIONS BETWEEN STUDENT 

AFFECTIVE FACTORS RELATED TO PERSISTENCE IN SCIENCE, PHYSICS, 

AND ENGINEERING 

by 

Jacqueline Doyle 

Florida International University, 2017 

Miami, Florida 

Professor Geoff Potvin, Major Professor 

This dissertation explores how students’ beliefs and attitudes interact with their identities 

as physics people, motivated by calls to increase participation in science, technology, 

engineering, and mathematics (STEM) careers. This work combines several theoretical 

frameworks, including Identity theory, Future Time Perspective theory, and other 

personality traits to investigate associations between these factors. An enriched 

understanding of how these attitudinal factors are associated with each other extends 

prior models of identity and link theoretical frameworks used in psychological and 

educational research. The research uses a series of quantitative and qualitative 

methodologies, including linear and logistic regression analysis, thematic interview 

analysis, and an innovative analytic technique adapted for use with student educational 

data for the first time: topological data analysis via the Mapper algorithm.  

 Engineering students were surveyed in their introductory engineering courses. 

Several factors are found to be associated with physics identity, including student interest 
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in particular engineering majors. The distributions of student scores on these affective 

constructs are simultaneously represented in a map of beliefs, from which the existence 

of a large “normative group” of students (according to their beliefs) is identified, defined 

by the data as a large concentration of similarly minded students. Significant differences 

exist in the demographic representation of this normative group compared to other 

students, which has implications for recruitment efforts that seek to increase diversity in 

STEM fields. Select students from both the normative group and outside the normative 

group were selected for subsequent interviews investigating their associations between 

physics and engineering, and how their physics identities evolve during their engineering 

careers. 

 Further analyses suggest a more complex model of physics and engineering 

identity which is not necessarily uniform for all engineering students, including 

discipline-specific differences that should be further investigated. Further, the use of 

physics identity as a model to describe engineering student choices may be limited in 

applicability to early college. Interview analysis shows that physics recognition beliefs 

become contextualized in engineering as students begin to view physics as an 

increasingly distinct domain from engineering. 

 

 

 

 

  



vi 

 

TABLE OF CONTENTS 

CHAPTER          PAGE 

Chapter I: Introduction .......................................................................................... 12 

Research Questions ........................................................................................... 15 

Background and Literature Review .................................................................. 16 

Intersectionality............................................................................................. 17 

Identity framework........................................................................................ 19 

A note about social cognitive career theory .................................................. 21 

Other theoretical frameworks ....................................................................... 22 

Survey Development ......................................................................................... 28 

Survey Deployment .......................................................................................... 32 

 

Chapter II: Attitudes associated with Physics Identity ......................................... 34 

Introduction ....................................................................................................... 34 

Motivating the search for discipline-specific effects .................................... 34 

Research Questions ....................................................................................... 35 

Methodology ..................................................................................................... 35 

Results of the Primary Model ........................................................................... 39 

Discussion and Interpretation of the Primary Model ........................................ 48 

Results and Discussion of the Secondary Models ............................................ 55 

Differences with the Primary Model............................................................. 57 

Implications and Directions for Future Work ................................................... 58 

Limitations of this Study ................................................................................... 60 

 

Chapter III: Topological Mapping of Student Affective Factors.......................... 62 

Introduction ....................................................................................................... 62 

Background ....................................................................................................... 63 

Challenges of Intersectionality in Quantitative Research ............................. 63 

Another Approach to Understanding Student Diversity: Cluster Analysis .. 64 

Topological Data Analysis as a Means to Cluster ........................................ 65 



vii 

 

Topological Data Analysis in InIce .............................................................. 65 

Methodology ..................................................................................................... 66 

Description of INICE Survey........................................................................ 66 

Attitudinal Factors ........................................................................................ 67 

Survey Demographics and Self-Identification .............................................. 71 

Requirements to perform TDA using Mapper .............................................. 72 

The Mapper Clustering Algorithm................................................................ 76 

Chosen Filter Function for InIce Data .......................................................... 77 

Advantages of TDA over other Cluster Analyses......................................... 79 

Challenges of using TDA and Mapper with Quantitative Student Data ....... 84 

Results ............................................................................................................... 87 

Group Attitudinal Differences ...................................................................... 89 

Differences in Major Interest between the Groups ....................................... 93 

Classic Demographic Differences Between Groups ..................................... 94 

Conclusions and Implications ......................................................................... 101 

Variability in the Normative and Near-normative Groups ......................... 101 

Attitudinal and Demographic Diversity ...................................................... 102 

Limitations of this Study ................................................................................. 104 

Directions for Future Work ............................................................................. 105 

 

Chapter IV: Time-Dependent Characterization of Physics Identity ................... 107 

Introduction ..................................................................................................... 107 

Methodology ................................................................................................... 109 

Choice of Participants ................................................................................. 110 

About the Participants ................................................................................. 113 

Choice of Questions in Interview Protocol ................................................. 116 

Results and Analysis ....................................................................................... 117 

Salience of Physics Identity to Students’ Engineering Experience ............ 118 

Evolution of Physics Recognition Beliefs .................................................. 122 

Discussion ....................................................................................................... 129 

Engineering as applied physics, increasingly distinct from physics ........... 129 



viii 

 

Physics identification anchored by performance, shifting to engineering .. 130 

Conclusions and Implications ......................................................................... 133 

Limitations of this Study and Directions of Future Work .............................. 134 

 

Chapter V: Conclusions ...................................................................................... 136 

Introduction and Summary of Findings .......................................................... 136 

Summary of Answers to Research Questions ............................................. 137 

Conclusions and Implications ......................................................................... 139 

Implications for Education Researchers ..................................................... 139 

Implications for Educators and Program Directors .................................... 141 

Future Directions ............................................................................................ 142 

 

LIST OF REFERENCES .................................................................................... 144 

 

APPENDICES .................................................................................................... 151 

 

VITA ................................................................................................................... 204 

 

  



ix 

 

LIST OF TABLES 

TABLE           PAGE 

Table 1 - Abbreviations used for majors........................................................................... 37 

Table 2 - Factor Loadings for Physics Identity sub-constructs......................................... 39 

Table 3 - Factor loadings for Belongingness .................................................................... 40 

Table 4 - Factor loadings for constructs from Grit ........................................................... 40 

Table 5 - Factor loadings constructs from Achievement Goal Theory ............................. 41 

Table 6 - Factor loadings for constructs from Expectancy Value Theory and FTP ......... 42 

Table 7 - Factor loadings for constructs from Agency Beliefs ......................................... 43 

Table 8 - Factor loadings for constructs from the "Big 5" Psychological Traits .............. 44 

Table 9 - Factor loadings for constructs related to Math Identity ..................................... 45 

Table 10 - Factor loadings for constructs related to Engineering Identity ....................... 46 

Table 11 - Linear model of physics identity by attitudinal factors. .................................. 47 

Table 12 - Linear regression predicting Belongingness with Physics Identity ................. 49 

Table 13 - Summarized expanded models ........................................................................ 55 

Table 14 - Decision matrix to select a subset of factors for use in the Mapper algorithm.

............................................................................................................................... 69 

Table 15 - Attitudinal differences between groups ........................................................... 90 

Table 16 - Differences in major interest between the normative group and the disparate 

group ..................................................................................................................... 93 

Table 17 - Odds ratio of membership in normative group predicted by gender. .............. 96 

Table 18 - Odds ratio of membership in normative group predicted by race/ethnicity. ... 96 

Table 19 - Odds ratio of membership in normative group predicted by gender and 

race/ethnicity. ........................................................................................................ 97 

Table 20 - Odds ratio of membership in normative group predicted by combined gender 

and race/ethnicity. ................................................................................................. 97 



x 

 

Table 21 - Reference level odds ratios .............................................................................. 98 

Table 22 - Pairwise distances between interview participants and the normative group 114 

Table 23 -  Summary of selected student demographic information of interview 

participants .......................................................................................................... 116 

Table 24 – Interview participant physics identity sub-construct scores ......................... 116 

Table 25 - Interview protocol blocks asked to each participant in the first semi-structured 

interview. ............................................................................................................ 117 

 

  



xi 

 

LIST OF FIGURES 

FIGURE           PAGE 

Figure 1 – Polyserial correlation between having a declared major and interest score. ... 37 

Figure 2 - Density estimates for responses to Q14 ........................................................... 38 

Figure 3 – Histogram of filter values. ............................................................................... 79 

Figure 4 - Example barcode diagram ................................................................................ 82 

Figure 5- Mapper algorithm being applied to example data. ............................................ 83 

Figure 6 - Map of the InIce attitudinal factors data with highlighted groups. .................. 88 



12 

 

CHAPTER I: INTRODUCTION 

The President’s Council of Advisors on Science and Technology has argued for 

increasing the number of STEM graduates by approximately one million over the next 

decade when the report was issued in 2012, in order to maintain economic 

competitiveness, growth, and quality of life in the United States (National Academies, 

2007, 2010; PCAST, 2012). The shortage of STEM professionals is particularly pertinent 

to the fields of physics and engineering where fewer women, African Americans, and 

Hispanics graduate than what is commensurate with their population sizes (NRC, 2013). 

Their primary suggestion to achieve this goal was to increase undergraduate retention of 

STEM majors; 48 percent of students who entered STEM fields seeking their bachelor’s 

and 69 percent of those seeking their associate’s degree had left by spring 2009 (Chen & 

Soldner, 2013). While these rates are comparable with other fields like humanities, health 

sciences, and business, they nevertheless reveal a massive loss of majors which, if it 

could be reduced by as little as 10%, would result in hundreds of thousands of additional 

students graduating in STEM fields. Therefore, an understanding of which factors are 

related to or lead to increased persistence (and thus reduced attrition) is key to achieving 

this goal of more graduates, and “identification with a group or community of STEM 

professionals may overshadow many other factors in determining persistence” (PCAST, 

2012). 

Introductory-level university physics courses (both algebra-based and calculus-

based) are taken by students in a wide range of STEM majors, only a small fraction of 

which are physics majors. Instead, these courses serve the undergraduate STEM 

population as a whole and provide some physics instruction for students with a wide 
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variety of career intentions.  One large sub-population of students taking introductory 

college physics is engineering majors, many of whom will use physics-related ideas 

throughout their studies and will pursue careers in the physical sciences/engineering. 

Student identification with physics, as described in the identity framework of 

Hazari et al. (Hazari, Sonnert, Sadler, & Shanahan, 2010), Carlone (Carlone & Johnson, 

2007), etc. has been found to be a strong predictor of student persistence in physics, and 

intentions related to a career in physical science (Godwin, Potvin, Hazari, & Lock, 2016). 

Other affective factors have been separately studied in the context of student science-

related performances. For example, a students’ sense of belongingness has been linked to 

persistence in their college program and their performance(Freeman, Anderman, & 

Jensen, 2007; Pittman & Richmond, 2008). Also, the personality traits of grit and 

conscientiousness have been consistently associated with academic success and 

persistence (Duckworth, Peterson, Matthews, & Kelly, 2007; Trapmann, Hell, Hirn, & 

Schuler, 2007). The Big Five personality traits (McCrae & John, 1992) have also been 

linked to academic motivation (Clark & Schroth, 2010; Komarraju, Karau, & Schmeck, 

2009). And foremost, student identity as a science, physics, or engineering person has 

been linked with performance, retention, and eventual career choice in a STEM field 

(Carlone & Johnson, 2007; Godwin et al., 2016; Hazari et al., 2010; Plett et al., 2011). 

However, many of these studies have focused, for theoretical or practical reasons, on a 

single affective factor in any one study, rather than exploring the relative role of several 

at one time, though there are some exceptions which examine a handful of related factors 

at one time (e.g. Grit and the Big Five (Duckworth et al., 2007)).  
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In this paper, I examine the attitudes of engineering students, with a focus on their 

physics identities and related attitudinal constructs. Physics identity has been previously 

found to be a critical predictor of engineering-related career choices at the precollege-to-

college transition (Godwin et al., 2016). Specifically, in a nationally-representative study 

of college freshmen, three factors were found to be predictive of engineering choice in 

college: students' precollege physics and math identities, and their agency beliefs: beliefs 

in the power of science and engineering to impact one's life and the world around oneself. 

Unlike other domains, students who pursue engineering majors in college often have few 

direct engineering experiences or course-taking (Katehi, Pearson, & Feder, 2009), so the 

importance of identities in other related domains—physics and math—is increased.  Once 

students gain a number of direct engineering experiences—say, by taking college 

engineering courses—then the importance of a physics or math identity to their 

engineering pursuits may diminish over time.  At the start of college, these other domain 

identities remain quite relevant, which is why the current study focuses on early college 

experiences. 

Chapter 1 introduces the research topic and provides background and motivation 

for the conducting these studies. I then introduce the research questions featured in each 

chapter. I describe the theoretical frameworks informing the current work and the 

affective constructs from each that were measured and analyzed in the subsequent 

chapters. The chapter finishes with a description of the survey used to collect the initial 

student data. 

Chapter 2 deals with answering the first two research questions through multiple 

linear regression. I present two regression analyses: the first looks at which affective 



15 

 

constructs are significantly related to students’ physics identities, while the second 

analysis includes an interaction with students’ interest in particular engineering majors to 

examine whether the pattern of significance is different for various groups.  

Chapter 3 answers the third and fourth questions by introducing topological data 

analysis, a new method in education research used to construct a representation of the 

affective space of beliefs. I combine it with traditional statistical analyses (proportion 

tests, logistic regression, and various tests of difference in means) to unpack the 

representation and look for significant effects in both attitudes and representation of 

traditional demographics. 

Chapter 4 builds on the results of the previous chapter by qualitatively analyzing 

interviews from individuals selected using the results from Chapter 3 to answer the final 

two questions. Interviews were coded for thematic phenomenological analysis, and the 

results are presented and discussed.  

Chapter 5 finishes the dissertation by reflecting on the findings of each chapter in 

toto and in combination and discussing implications and directions for future work. 

Research Questions 

This dissertation seeks to answer the following questions throughout its chapters: 

Chapter 2: 

1. For the introductory engineering students at the four collaborating institutions, how 

are various attitudinal factors associated with students’ physics identity beliefs? 

2. How are the associations identified in Research Question 1 mediated by students’ 

interests in various engineering disciplines? 

rastreve
Highlight



16 

 

Chapter 3: 

 

3. How are students distributed in the space of affective beliefs? 

4. What demographic differences exist between students holding normative beliefs and 

those with non-normative beliefs? 

Chapter 4 

5. How do students’ perceived connections between engineering and physics change as 

they become more experienced in engineering? 

6. How does the nature of students’ physics recognition beliefs change over time? 

Background and Literature Review 

Increasing the diversity in engineering education has been a priority of educators 

and education researchers for the past 30 years. Despite 30 years of research and reform, 

the enrollment of demographically diverse individuals in undergraduate engineering 

degree programs has not substantially improved. In much work that has studied diverse 

student experiences, an approach is often taken to divide students based on singular (or a 

small set of) demographic identifiers (e.g., Black or White; male or female; etc.). These 

categorizations often serve to bin students and generalize findings for women or 

underrepresented minority students in a way that seeks to highlight the issues faced by 

underrepresented groups and/or identify ways to support such students more effectively. 

However, one limitation of this general approach is that it often ignores the multitude 

identities and holistic experiences of individuals that combine uniquely for every person. 

That is, such a traditional approach to understanding diversity does not take into account 

rastreve
Highlight
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the rich and nuanced differences in individuals’ experiences. Further, this approach may 

not faithfully account for the true spectrum of motivations, attitudes, and goals of 

individual students since people with a variety of affects may be “binned” together as a 

presumed-homogenous group, thus missing out on a more nuanced and faithful 

understanding of students, as demographic diversity does not necessarily have a one-to-

one relationship with affective diversity. 

Examining the multi-faceted aspects of student identities can provide a more 

holistic understanding of students’ attitudes and beliefs than examining just one particular 

dimension of students’ identities. Individuals have multiple overlapping identities that 

comprise their affiliations, attachments, and social engagement. Foregrounding just one 

of these identities in an analysis limits the richness of understanding a person as a whole 

and how their multiple identities impact how they are positioned and position themselves 

in the world. 

Intersectionality 

One approach to understanding multiple overlapping identities has its roots in 

Intersectionality Theory. Originating from critical legal studies (Crenshaw, 1989, 1991), 

this theory examines how multiple intersecting identities form interacting layers of 

oppression in society. Kimberlé Crenshaw (1989) first put forward this way of 

understanding how identities intersect from her experience studying case law. In one 

case, Emma DeGraffenreid et al. v. General Motors Assembly Division (1977), a woman 

of color, Emma DeGraffenreid, was fired from General Motors. She and four other Black 

women brought legal suit against the company citing discriminatory labor practices. In 
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the company, white women did one set of jobs (mostly secretarial) and white men did 

another set of jobs (management). Additionally, Black individuals were hired in the 

hands-on labor jobs while white individuals did the clerical or office jobs. The issues for 

Black women were compounded. Jobs for Black individuals were “men’s jobs”, and the 

jobs women were “white jobs”. Black women faced double challenges when applying for 

positions within the company. When the case came to court, the judge dismissed the case 

citing that the company had representative numbers of both Black employees and female 

employees. The court would not allow the claimants to combine racism and sexism into 

one suite. Because Emma could not demonstrate that the discrimination was along purely 

racial or gender lines, she could not prove her claim. This injustice allowed the 

intersections of both race and gender to be ignored and prompted Crenshaw to develop 

the theory of Intersectionality. 

Intersectionality theory provides a way to identify and examine the relationship 

between individuals’ multiple identities and structures of power. In her work, Crenshaw 

identified different variations in experience for Black women. Sometimes they had 

similar experiences to Black men or to white women. Other times, they faced additive or 

multiplicative effects (“double discrimination”), whereas in other cases, they had 

particular experiences specific to their status as Black women. It is important to note that 

some members of disadvantaged groups also hold, in part, privileged identities (e.g., 

middle-class Blacks, White women in STEM). These variations of experiences reveal 

that although much of the literature on intersectionality has been theorized from the 

standpoint of those who experience multiple dimensions of disadvantage, this framework 

can also inform how privileged groups are understood (Cole, 2009). 
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The present study utilizes intersectionality in a new way to better understand the 

underlying attitudes and beliefs of students. Rather than a critical analysis of power and 

positionality, I instead use it as a guiding principle in examining multiple intersections of 

students’ attitudes, beliefs, and identities to more faithfully understand the students who 

are pursuing college engineering and what underlying attitudes might be privileged 

within engineering culture. This approach provides a different, but complementary, way 

to understand the nuanced differences and similarities among engineering students. I 

acknowledge that my focus is on the intersections of student identities and not on a 

critique of power and positionality within the existing social structures of engineering 

programs. This approach enables an understanding of underlying attitudes and beliefs, 

influenced by college engineering students’ incoming attitudes, that shape students’ 

experiences within engineering, reify engineering culture, and promote or deter an 

individual’s persistence in engineering. 

Identity framework 

Identity is a framework of analysis (Chachra, Kilgore, Loshbaugh, Mccain, & 

Chen, 2008; Gee, 2000) to study student engagement, belonging, and persistence in 

STEM, including physics, mathematics, and engineering (Cass, Hazari, Cribbs, Sadler, & 

Sonnert, 2011). Very broadly, one’s identity describes how they see themselves and 

interact with the world. One can have many different identities, corresponding to 

different spheres of life, activating each identity when it is relevant. 

In the context of this study, Physics Identity can be thought of as the extent to 

which someone sees themselves as a “physics person” (Lock, Castillo, Hazari, & Potvin, 
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2015); likewise, someone with a strong Math Identity sees themselves as a “math 

person”, and someone with a strong Engineering Identity sees themselves as an engineer. 

In this framework, it is conceptualized as a quasi-trait—something which is relatively 

stable but which can change as a result of experiences (Cribbs, Sadler, Hazari, Conatser, 

& Sonnert, 2013; Potvin & Hazari, 2013). This identity is constructed of three sub-

constructs (Carlone & Johnson, 2007; Godwin, Potvin, & Hazari, 2013; Hazari et al., 

2010). Performance/Competence beliefs, originally constructed as two separate factors 

(Hazari et al., 2010) which were experimentally indistinguishable in repeated 

measurements of students in high school or early college (Potvin & Hazari, 2013), 

describes a student’s belief in their ability to succeed at physics both in terms of 

understanding the content, and in terms of their performance (e.g., exams). Recognition 

beliefs describe students’ beliefs that others, including parents, instructors, and peers, 

recognize them as a physics person (in the case of Physics Identity). Interest, which was 

not present in Carlone and Johnson’s original construction of science identity (Carlone & 

Johnson, 2007) but later emerged in discussions of domain-specific identity (Hazari et al., 

2010), describes a student’s interest and enjoyment in learning about the subject and 

doing related tasks.  

In this study, I use the quantitative identity framework developed by Hazari et al. 

(Hazari et al., 2010) to describe science identity and physics identity, which has been 

replicated in engineering (Godwin, 2016; Godwin, Potvin, & Hazari, 2013) and math 

(Cribbs, Hazari, Sonnert, & Sadler, 2015; Godwin et al., 2016). The overall measure of 

Physics Identity is constructed from the three sub-constructs, Performance / Competence, 

Recognition, and Interest, which are combined in an unweighted average to give an 
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overall score. Math Identity is similarly constructed of three domain-specific sub-

constructs, measured with similar items that are framed in terms of math instead of 

physics (Cribbs et al., 2015; Godwin, Potvin, Hazari, & Lock, 2013). However, the 

relationship between these two types of identities has not yet been fully explored, even 

though they’ve been used together as predictors of other outcomes (e.g., engineering 

identity or interest in pursuing a career in engineering (Godwin, Potvin, & Hazari, 2013; 

Godwin et al., 2016)). 

A note about social cognitive career theory 

Social cognitive career theory (SCCT) (Lent, Brown, & Hackett, 1994) has been 

used in engineering education research for studying career choice (e.g., (Carrico & 

Tendhar, 2012; Sheu & Bordon, 2017)). SCCT combines aspects of social cognitive 

theory and Self-efficacy (Bandura, 1977, 1997, 1999). Instead of using this framework to 

shape the analysis, I instead chose to focus on the identity framework presented by 

Hazari et al., because it better predicts engineering career choice (Godwin et al., 2016) 

than SCCT alone. Furthermore, SCCT does not account for recognition beliefs, which are 

integral to the identity framework, and instead focuses primarily on 

performance/competence beliefs, which prior work with the identity framework has 

shown has only an indirect effect on career choice, mediated by interest and recognition 

beliefs (Godwin et al., 2016).  
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Other theoretical frameworks 

Belongingness 

Belongingness is a measure of how accepted, comfortable, and welcome a student 

feels in their engineering classroom and program, which contributes to academic 

engagement and achievement (Freeman et al., 2007; Pittman & Richmond, 2008). In this 

survey, this factor is domain-specific to engineering.  Example items include: “I feel 

welcome in engineering,” and “I feel supported in my engineering class.” This construct 

was developed by the research team for the InIce survey, based on prior literature. 

Originally envision several factors made of many more items, the pilot factor analysis 

showed that a single overall factor was more appropriate, as the distinctions between 

hypothesized sub-constructs were not present. 

Achievement Goal Theory 

Performance Approach and Mastery Approach are drawn from Achievement 

Goal Theory (Dweck & Leggett, 1988). They describe why a student engages in 

behaviors related to their achievement. Students who take a performance approach 

engage in behaviors to display their competence to others (example items: “Proving to 

my peers that I am a good student”, and “Getting a better grade than other students in this 

class”) while for students with a mastery approach the focus is on developing competence 

and understanding (example items: “Really understanding this course’s material” and 

“Feeling satisfied that I got what I wanted from this course”). Related to these two is 

Work Avoidance (Dowson & McInerney, 2001), in which the student’s goal is to 

minimize the amount of effort required in order to pass the requirements (example items: 
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“Getting a passing grade with as little studying as possible” and “Not having to work too 

hard in this class”). The combination of these three factors influences how students 

approach problem-solving, learning, and their education as a whole.  

Kaplan and Flum (Kaplan & Flum, 2010) connected these approaches to 

generalized identity formation and argued that the mindsets and approaches of 

Achievement Goal Theory are related to the mindsets and approaches students use when 

forming their identities. They raised questions of whether identity formation styles inform 

which achievement goal mindset a student employs in a particular situation. 

Expectancy-Value Theory 

Expectancy is drawn from Expectancy-Value Theory (Eccles et al., 1983; Eccles 

& Wigfield, 2002), and describes how well someone expects to do on a task, in the 

present. An expectation of success is informed by a students’ socialization, including 

gender and cultural stereotypes, and past performances on similar tasks. Example 

questions measuring this construct include “I expect to do well in this engineering 

course” and “I am confident I can do an excellent job on the assignments in this 

engineering course.” Notably, these questions are a measure the students’ expectation of 

their academic success in the class itself, as opposed to the engineering program as a 

whole, college, or their later careers. This construct is related to but distinct from self-

efficacy (Bandura, 1997). According to expectation value theory, expectation of success 

at a particular task (including broad definitions of a task like “pass a course”) combined 

with the student’s subjective task value (a combination of what they gain from doing the 
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task and what it will cost them) influences their choice of actions and overall 

performance (Wigfield, Eccles, Schiefele, Roeser, & Davis-Kean, 2007). 

Future Time Perspective 

Connectedness, Instrumentality, Value, and Perceptions of Future are all aspects 

of Future Time Perspective (FTP) theory (González, Fernández, & Paoloni, 2016; 

Husman & Lens, 1999; Kirn, Faber, & Benson, 2014; Simons, Vansteenkiste, Lens, & 

Lacante, 2004a) which expands existing motivation theories to explicitly include time 

components for values and goal setting.  

Connectedness is a measure of the perceived interconnectedness of the present 

and future, in general (example items [negatively-coded]: “I don’t like to plan for the 

future”, “It’s not really important to have future goals for where one wants to be in five to 

ten years.”).  

Perceptions of Future describe how certain a student is that they are going to have 

a future career in engineering, and how positively they view that future (example item: “I 

want to be an engineer”).  

Instrumentality is a measure of how connected or useful one feels their current 

tasks are for future career and success. Perceived instrumentality is a context-specific 

measure and relates to one’s emerging identity (example item: “I will use the information 

I learn in this engineering course in the future”). In other words, what the value of the 

current task (i.e., taking and passing their engineering course) is to their future lives. 

Instrumentality has been associated with student performance; students with a positive 

perceived future and high instrumentality have higher motivation and performance for 
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tasks related to that future, while students with a negative perceived future and high 

instrumentality see decreases in both motivation and performance(Simons et al., 2004a).  

Here, I measure Instrumentality as it relates to a future career as an engineer.  

Value is a statement about the worth of the future as compared to that of the 

present (example item: “Long range goals are more important than short range goals”). 

Value, as used in Future Time Perspective here, is a distinct idea from that used in 

Expectancy Value Theory, which is more similar to the Instrumentality construct 

(specifically, Instrumentality is a measure of Utility Value the explicitly considers time). 

Kirn, Faber, and Benson (2014) describe how students with particular 

combinations of these FTP constructs fashion their identities in distinct ways. Students 

with high Connectedness, Perceptions of Future, and Instrumentality (called “sugar 

cones” in their work) had clear and detailed ideas of what they wanted to do and be in the 

future, as well as clear paths to achieve that future. Sugar cone students were able to 

envision possible futures containing both positive outcomes (the person they wished to 

become) as well as outcomes they wished to avoid, negative futures closely related to 

their ideal future (e.g., a student who wants to become an anesthesiologist, and doesn’t 

want to become a surgeon of doctor; both the ideal and the avoided futures are similar in 

kind). 

Grit 

Grit is defined as perseverance and passion for long-term goals (Duckworth et al., 

2007), and has been associated with success such as job retention and scholastic 

achievement (Duckworth & Quinn, 2009; Eskreis-Winkler, Shulman, Beal, & 
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Duckworth, 2014). A person’s grit can be divided into two sub-constructs. Example items 

from Persistence of Effort, or perseverance for long-term goals, include “I have overcome 

setbacks to conquer and important challenge” and “I finish whatever I begin”. 

Consistency of Interest describes the student’s passion and commitment to long-term 

goals. Example items include (negatively coded) “I have difficulty maintaining my focus 

on projects that take more than a few months to complete”, and “My interests change 

from year to year”. 

Agency Beliefs  

Agency Beliefs refer to a student’s perception of their ability to change their 

world through their everyday actions and life goals (Basu, Calabrese Barton, Clairmont, 

& Locke, 2009; Godwin, Potvin, & Hazari, 2013; Turner & Font, 2003), and have been 

previously connected to the decision to enter engineering and interest in various 

engineering fields(Potvin et al., 2013). These studies investigated both “Personal” and 

“Global” Agency Beliefs and found that personal agency beliefs were positive significant 

predictors of decisions to enter college for science or engineering (Godwin, Potvin, & 

Hazari, 2013; Godwin et al., 2016). The questions measuring personal agency beliefs 

were included in the survey as a measurement of Science Agency Beliefs, in contrast with 

a related set of questions, which were similarly phrased, but concerning engineering. For 

example, an item from the Science Agency beliefs factor is “Science is helpful in my 

everyday life,” whereas a similar item from the Engineering Agency Beliefs factor is 

“Engineering can improve our society”. Both talk about the impact of science or 

engineering, but Science Agency Beliefs are focused on the student (with “I” and “me” 
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phrases), while Engineering Agency Beliefs are somewhat more externally focused on 

Engineering, though still interested in how it relates to the student and their ability to 

affect the world. In prior research (Godwin, Potvin, & Hazari, 2013; Godwin et al., 2016) 

these were studied in tandem with Physics Identity to predict students’ choice to go into 

engineering, but the constructs were non-interacting in that model. 

The “Big Five” Psychological Traits 

The “Big Five” Psychological Traits describe a five-factor model of personality 

that has solidified through several decades of research (Judge & Ilies, 2002; McCrae & 

John, 1992; Zillig, Hemenover, & Dienstbier, 2002). These five traits are Neuroticism, 

Extraversion, Agreeableness, Conscientiousness, and Openness to Experience. 

Neuroticism describes the tendency to show poor emotional adjustment in the form of 

stress, anxiety, and depression, and has alternatively been positively and negatively 

associated with student GPA (Noftle & Robins, 2007; Trapmann et al., 2007). 

Extraversion represents the tendency to be sociable, outgoing, and positive. 

Agreeableness describes tendencies to be kind, gentle, trusting, trustworthy, and warm. 

Conscientiousness describes the ways in which individuals are dutiful, orderly, 

deliberate, and self-disciplined; Conscientiousness has been consistently positively 

associated with academic success at the high school and college levels (Dumfart & 

Neubauer, 2016; Rimfeld, Kovas, Dale, & Plomin, 2016; Trapmann et al., 2007). High 

scores Openness to Experience describe people who are creative, flexible, curious, and 

unconventional. The Big Five have also been associated with student motivation, whether 

extrinsic or intrinsic (Clark & Schroth, 2010; Komarraju et al., 2009; Ryan & Deci, 
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2002). Neuroticism and Extraversion have been associated with extrinsic motivations to 

succeed academically, while Openness has been associated with high intrinsic motivation 

to know and experience stimulation. Conscientiousness has been associated with both 

kinds of motivation, and Agreeableness has been negatively associated with 

disengagement from learning (i.e. work avoidance). 

Grit and Conscientiousness are highly correlated with each other, and persistence 

has been identified as a major facet of Conscientiousness in studies probing the 

underlying factor structure of that personality trait (MacCann, Duckworth, & Roberts, 

2009). However, other studies (Eskreis-Winkler et al., 2014; Rimfeld et al., 2016) have 

shown that while Grit remains a significant predictor of several life outcomes while 

controlling for Big Five personality traits (including and especially Conscientiousness), it 

explains a small additional amount of variance. 

Survey Development 

The theoretical constructs used in this study correspond to latent variables which 

are impossible to directly measure. Proxy measurements can be made with related 

questions, however, and the overall trend of those answers can give a strong impression 

of the latent variable, as though it were measured directly. These proxy measurements are 

accomplished by running a factor analysis, and determining which questions load onto 

which factors. Each factor described by the factor analysis corresponds to a particular 

theoretical construct, and each question is given a “loading” by the analysis which 

corresponds to how strongly the responses to that question correspond to the overall 

factor. In mathematical formalism, given a 𝑛-many sets of 𝑑 random variables 𝑥𝑛 =
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{𝑥1,𝑛, … , 𝑥𝑑,𝑛}, with overall means 𝜇 = {𝜇1, … , 𝜇𝑑}, a factor analysis with 𝑘-many factors 

seeks to solve the equation 𝒙 − 𝜇 =  𝑳 𝑭 + 𝜀, where 𝒙 is the 𝑑×𝑛 matrix of observed 

variables, 𝑳 is a 𝑑×𝑘 matrix of loadings, 𝑭 is a 𝑘×𝑛 matrix of factors values for each 

observation, and 𝜀 is a 1×𝑛 vector of uncorrelated errors which are independent of 𝑭. 

Thus, through 𝑳, a particular observation 𝑥𝑛 can be converted into a list of numbers 𝐹𝑘 

describing the scores for that observation on each factor or latent variable. For more 

information, see e.g., (Graffelman, 2012). 

 Items for the chosen theoretical constructs were taken from previously developed 

surveys. The expected factor structure was established with an exploratory factor analysis 

(EFA) using a promax rotation1 on data from the pilot survey. An exploratory factor 

analysis was used because these questions had not yet been used together with this 

population. This rotation was chosen to maximize interpretability of the factors since 

correlation was expected between several items. For example, the identity sub-constructs 

are well-correlated and interrelated, so forcing those factors to be orthogonal would 

reduce the ability of that factor to accurately describe the underlying construct. Results 

were used to shorten the survey by eliminating poorly performing items. Items with low 

loadings onto their factor were removed. As a first pass, questions needed to have a 

loading of higher than 0.4 for all factors; subsequent passes increased this cutoff on a 

factor-by-factor basis depending on the number of questions remaining in the factor. In 

the end, each factor was measured with 3-5 items which performed best. For newly-

                                                 

1 Promax rotation allows the resulting factors to be correlated, as opposed to forcing them to be orthogonal. 
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developed questions, items which had loadings that were split between multiple factors 

were particularly targeted for removal to improve factor interpretability, and no such 

items remained in the final survey. 

Personality tests designed to measure the “Big 5” psychological traits can be 

hundreds of items long. To reduce survey fatigue, the survey tried to measure these 

constructs with as few questions as possible without affecting reliability. Starting with a 

50-item instrument from Goldberg (1992), the number of items for each factor was 

reduced to five by choosing the items with the highest loading in a five-factor EFA, as 

described above. Credé et al. have shown (2012) while two-item measures of these 

psychological traits have reduced reliability, the reliability quickly increases with just a 

few more items. Thus, while the measurement of students’ psychological traits may not 

have the nuance to separate into the various facets of each trait (because six facets of a 

trait cannot be accurately measured with only five items), the measure of the overall trait 

can still be considered valid.  

The factor analysis revealed 26 theoretical constructs underlying the questions 

about attitudes and beliefs, drawing from a variety of affective theories. Some of these 

constructs were developed by the research team, for this project or in prior work, and 

others were drawn from the literature as being relevant to engineering student academic 

success, performance, learning, retention, and STEM career choice. The numeric results 

factor analysis establishing this structure and item loadings are included in Chapter 2. 

The demographic questions at the end of the survey were developed in large part 

by the research team, or adapted from either the National Survey of Student Engagement 

(NSSE) or the Sustainability and Gender in Engineering (SaGE) surveys (Fernandez et 
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al., 2016). Questions were constructed to be as broadly reaching and inclusive as 

possible; i.e., a “select all that apply” response structure was used for questions about 

ability/disability status, race and ethnicity, gender identity, sexuality, parental/guardian 

gender identity(s), and family occupations, and more inclusive response options were 

provided than, for example, a simple gender binary.  

Students’ current major was asked as an open-ended, fill-in-the-blank question. 

These open responses were then cleaned by hand to remove unnecessary variations while 

retaining as much information as possible. For example, responses of “ME”, “Mech. E”, 

and “Mechanical Engineering” were all interpreted to mean “Mechanical Engineering” 

for subsequent analysis. In all, 23 unique majors were provided with an additional 49 

unique combinations (i.e., two or more majors simultaneously reported), though the 

majority of responses (54.4%) fell into one of three well-populated majors2. 24.9% of 

students responded that they were “General Engineering” majors, 15.3% responded with 

“Mechanical Engineering”, and 14.3% responded with “First-year Engineering”. The 

next most popular response was “Civil Engineering”, with 5.96%, significantly lower 

than the top three categories.  

In addition, students were asked about the current interest in each of several 

different majors, each on an anchored scale from 0 (not at all interested) to 6 (extremely 

interested). The majors included all of the engineering majors offered at the four 

                                                 

2 For example, “Mechanical Engineering” and “General Engineering” were two popular categories. 

“Mechanical Engineering and General Engineering” (if the student wrote both on their survey) was 

considered a unique response and had much fewer responses. 
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participating institutions3, as well as “Other STEM-related Degree” and “Other non-

STEM-related Degree”. 

The final version of the survey consisted of 22 (multi-item) questions, including 

several affective constructs (described above), their current major, and their career 

interests, and demographic factors.  Affective items used anchored scales (on 0 to 6 

scales), while demographic questions were all select-all-that-apply. 

Survey Deployment 

The survey was developed in Spring 2015 by a four-institution collaboration 

between Florida International University (FIU); University of Nevada, Reno (UNR); 

Clemson University; and Purdue University as part of the Intersectionality of Normative 

and Non-normative Identities in the Culture of Engineering (InIce) grant. Questions 

measuring student affect were drawn from previously completed survey studies 

performed by the grant PIs (Godwin, 2016; Godwin, Potvin, & Hazari, 2013; Hazari et 

al., 2010; Kirn & Benson, 2013; Potvin et al., 2013; Potvin & Hazari, 2013) or from 

instruments developed and discussed in the literature (Duckworth & Quinn, 2009; 

Goldberg, 1992; Husman, Lynch, Hilpert, & Duggan, 2007). These questions were 

revised and pared down following a piloting of the survey during Summer 2015 at three 

of the institutions. The pilot survey had 537 responses (223 from UNR, 78 from Purdue, 

and 236 from Clemson). See Appendix on page for the final survey version. 

                                                 

3 For a full list, see the final survey in Appendix. 
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At the beginning of the Fall 2015 semester, students were surveyed at the four 

participating institutions. Surveys were administered between August 15th and September 

14th, depending on institutional start dates. Students were recruited based on their 

enrollment in each institution's introductory engineering classes and were surveyed 

during class time with paper & pencil instruments during the first two weeks of the 

semester, before students had significantly progressed into their courses.  

Student participation was voluntary and anonymous, though at the end of the 

survey students were asked to provide a contact e-mail address if they were willing to 

participate in follow-up interviews at a later date. Perhaps in part because the survey was 

given during class time with nothing else to distract the students, the participation rate 

was high (average response rate of 70.7%, with the response rate at each institution being 

over 65%). In all, 2916 responses were collected (514 from UNR, 1104 from Purdue, 

1050 from Clemson, and 298 from FIU4). A confirmatory factor analysis of the survey 

data confirmed that the factor structure from the pilot survey persisted.  

                                                 

4 FIU had an undergraduate engineering population of approximately 2,800 students. Purdue had 

approximately 7,640 undergraduate engineering majors. Clemson had approximately 1160 general 

engineering majors, which all first-year engineering students take before later specializing. UNR has 

approximately 2610 undergraduate engineering students. Thus, though the numbers of students at each 

institution are not equal, the sample sizes reflect the relative sizes of the student populations of interest at 

each institution. 
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CHAPTER II: ATTITUDES ASSOCIATED WITH PHYSICS IDENTITY 

Introduction 

In this chapter, I reintroduce the two research questions that will be investigated 

herein and then give a brief overview of the statistical methodology which will be used to 

conduct the analysis. I then present the results of my factor analyses and first linear 

regression, followed by a discussion of those results. Then, I present a series of additional 

linear regressions, a discussion of those results, and an overall discussion of the 

implications of my findings. I conclude with a few words on the limitations of this 

research. 

Motivating the search for discipline-specific effects 

Engineering is a diverse set of fields that deal with a wide variety of subjects and 

context, and different engineering can be appealing to different people; the sort of person 

who wants to become a Mechanical Engineer is not necessarily the same person who 

wants to become a Chemical Engineer (though it’s certainly possible to want to be both). 

With this in mind, I wanted to see whether the model of which attitudinal factors were 

associated with physics identity changed with the addition of discipline-specific effects. 

Specifically, it was of interest to understand whether a student’s interest in a particular 

major mediates the effect of other affective factors discussed in the previous. Prior 

research has shown differences between various engineering disciplines with regards to 

how students’ intentions to pursue a career in that discipline are associated with particular 

factors, including Physics Identity, Math Identity, and Science Agency Beliefs (Potvin et 

al., 2013). Whereas prior work focused on each factor independently, this section extends 
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the analysis to investigate similar discipline-specific effects while simultaneously 

accounting for multiple of these affective factors. 

Research Questions 

I investigate the following research questions in this chapter: 

1. For the introductory engineering students at the four collaborating institutions, 

how are attitudinal factors associated with students’ physics identity beliefs? 

2. How are the associations identified in Research Question 1 mediated by students’ 

interests in engineering disciplines? 

Answering these questions will help to illuminate some of the connections 

between previously-independently-considered factors which have been studied in relation 

to student choice, success, and persistence in STEM. Knowing about these associations 

can help guide future research towards more nuanced and sophisticated explanatory 

models, and clarify new effects by better controlling for previously known results. And 

answering the second research question can provide additional depth and nuance to the 

findings from the first question if it turns out that the sort of engineering being considered 

can drastically change how these factors interact with each other. 

Methodology 

The methodology of the analysis for this chapter and the development of the InIce 

survey are related. The goal is to determine the association between several theoretical 

constructs and the one of primary interest, Physics Identity. The factor structure of these 

constructs was established and confirmed as described in Chapter 1; the factor loadings 

for each item in these factors is below.  To examine the association between several 
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factors and Physics Identity, I created a linear model predicting Physics Identity as a 

function of the other factors using multiple linear regression. That model was iteratively 

improved by removing factors which were found to be non-significant to create a final 

primary model of the associations between attitudes and physics identity. 

Students were surveyed near the beginning of their engineering program, and a 

plurality had not yet declared a major beyond “First Year Engineering” or “General 

Engineering”, as is standard for the two largest engineering programs studied. Over 40% 

of the students responded in this way to a survey item (Q11) probing this. However, 

included in the survey was a question (Q14) asking students to “Please rate your interest 

in the following majors” with several response categories, each on an anchored scale 

from zero (“Not at all”) to six (“Very much so”). See the full InIce survey in the appendix 

for the full wording of questions Q11 and Q14 (page 159).  Association between the 

student responses to “What is your current major?” and these interest items are high; the 

correlation between a student’s interest in a major and their declared major was high, 

ranging between 0.5085 and 0.7462, with a mean correlation of 0.6337, which can be 

interpreted as concurrent criterion-related validity evidence that Q14 responses as a proxy 

for students’ major. See Figure 1 for more details. 
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Figure 1 – Polyserial correlation between having a declared major and interest score.  

Q11 (vertical axis) probed students’ declared major, and their interest in each major was probed by Q14 

(horizontal axis). Minimum correlation of a major with itself (diagonal terms) was 0.5085, with a mean 

correlation of 0.6337. The largest off-diagonal terms were -0.371, between mechanical engineering and a 

declared major in environmental/ecological engineering, and 0.322, between interest in agricultural 

biological / biosystems engineering and a declared bioengineering / biomedical engineering major. 

Abbreviations are explained in Table 1. 

 

Table 1 - Abbreviations used for majors.  

The chosen abbreviations are specific to this dissertation, and do not always reflect the canonical 

nomenclature. 

Abbreviation Full Name 

AAE Aero/Astronautical Engineering 

ABE_BSE Agricultural and Biological / Biosystems Engineering 

BE_BME Bioengineering / Biomedical Engineering 

CME Chemical Engineering 

CVL Civil Engineering 

CE Computer Engineering 

CON Construction Management Engineering 

EE Electrical Engineering 

EP Engineering Physics 

EEE Environmental / Ecological Engineering 

IND Industrial Engineering 

IT Information Technology 

MSE Materials Engineering / Material Science and Engineering 

ME Mechanical Engineering 

MIE Multidisciplinary / Interdisciplinary Engineering 

NUKE Nuclear Engineering 

O-STEM Other STEM-related Degree 
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 Responses to the question on major interest were typically bimodal, with one 

peak being near zero (meaning, students have no interest in that major), and another in 

the 3-4 range (those students with significant interest). See Figure 2 for distributions of 

interest in each major. The only major which broke this trend was Mechanical 

Engineering, which had a significantly higher fraction of highly interested responses, 

with three times as many students answering each of 5 or 6 as compared to 0. However, 

this matches with the information about declared majors from Q11, in which Mechanical 

Engineering was overrepresented compared to any other kind of engineering, with the 

second highest number after only “General Engineering”. Therefore, one would expect 

that a higher proportion of students would show an interest in Mechanical Engineering. 

Figure 2 - Density estimates for responses to Q14 

For each of the identified majors. Major names were abbreviated for space.  Abbreviations for majors are 

explained in Table 1. 

 

The original model was then extended to multiple parallel models, each 

corresponding to the addition of another regressor describing student interest in a 
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particular engineering major. The list of interests was drawn from Q14 in the survey and 

represented all of the engineering major choices available at the four institutions 

administering the survey. 

Results of the Primary Model 

The survey questions to measure physics identity and their loadings on these 

factors are described below, followed by the questions and loadings for the other 

attitudinal factors included in this dissertation. 

Table 2 - Factor Loadings for Physics Identity sub-constructs 

Survey Item Factor Variance 

Explained Performance/

Competence 
Recognition Interest 

My parents see me as a physics 

person. 
 0.776  

23.9% 

My instructors see me as a 

physics person. 
 0.840  

My peers see me as a physics 

person. 
 0.923  

I’ve had experiences in which I 

was recognized as a physics 

person. 

 0.714  

Others ask me for help in physics.  0.567  

I am interested in learning more 

about physics. 
  0.801 

14.7% I enjoy learning physics.   0.874 

I find fulfillment in doing 

physics. 
  0.674 

I am confident that I can 

understand physics in class. 
0.927   

25.0% 

I am confident that I can 

understand physics outside of 

class. 

0.903   

I can do well on exams in 

physics. 
0.840   

I understand concepts I have 

studied in physics. 
0.728   

I can overcome setbacks in 

physics. 
0.467   

Total Variance Explained 63.6% 
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Table 3 - Factor loadings for Belongingness 

Survey Item 

Factor Variance 

Explained Belongingness 

I feel comfortable in engineering. 0.837 

64% 

I feel I belong in engineering. 0.825 

I enjoy being in engineering. 0.818 

I feel comfortable in my engineering class. 0.837 

I feel supported in my engineering class. 0.727 

I feel that I am part of my engineering class. 0.748 

Total Variance Explained 64% 

 

Table 4 - Factor loadings for constructs from Grit 

Survey Item 

Factor 
Variance 

Explained 
Consistency of 

Interest 

Persistence of 

Effort 

My interests change from year to year. 0.634  

28.1% 

I have been obsessed with a certain idea about 

a project for a short time but later lost interest. 
0.885  

I often set a goal but later choose to pursue a 

different one. 
0.905  

I have difficulty maintaining my focus on 

projects that take more than a few months to 

complete. 

0.627  

Learning science has made me more critical in 

general. 
0.624  

Engineering can improve our society.  0.791 

29.3% 

Engineering will give me the tools and 

resources I need to make an impact 
 0.805 

Engineering can improve our quality of life.  0.921 

I see engineering all around me.  0.678 

Engineering allows me to think deeply about 

problems. 
 0.564 

Total Variance Explained 57.4% 
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Table 5 - Factor loadings constructs from Achievement Goal Theory 

Survey Item 

Factor 

Variance 

Explained 

Performance 

Approach Work Avoid 

Mastery 

Approach 

Doing better than the other students 

in this class on exams. 
0.926   

29.5% 

Proving to my peers that I am a 

good student. 
0.546   

Doing better than the other students 

in the class on assignments. 
0.959   

Getting a better grade than other 

students in this class. 
0.934   

Getting a passing grade with as little 

studying as possible. 
 0.847  

23.5% 
Getting through the course with the 

least amount of time and effort. 
 0.963  

Not having to work too hard in this 

class. 
 0.839  

Knowing more than I did previously 

about these course topics. 
  0.754 

18.0% 
Really understanding this course’s 

material. 
  0.889 

Feeling satisfied that I got what I 

wanted from this course. 
  0.656 

Total Variance Explained 63.6% 
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Table 6 - Factor loadings for constructs from Expectancy Value Theory and FTP 

The table is split between two pages; the factor analysis was done with all five factors simultaneously. 

Survey Item 

Factor   

E
x

p
ec

ta
n

cy
 

C
o

n
n

ec
te

d
n

es
s 

P
er

ce
p

ti
o

n
s 

o
f 

F
u

tu
re

 

Variance 

Explained 

I expect to do well in this engineering course. 0.741   

15.3% 

I am certain I can master the skills being taught in 

this engineering course. 

0.809   

I believe I will receive an excellent grade in this 

engineering course. 

0.951   

I am confident I can do an excellent job on the 

assignments in this engineering course. 

0.909   

Considering the difficulty of this engineering 

course, the teacher, and my skills, I think I will do 

well in this engineering course. 

0.829   

*I don’t think much about the future.  0.783  

10.8% 

*I don’t like to plan for the future.  0/801  

*It’s not really important to have future goals for 

where one wants to be in five to ten years. 

 0.579  

*One shouldn’t think too much about the future.  0.710  

*Planning for the future is a waste of time.  0.672  

I am confident about my choice of major.   0.618 

10.3% 

Engineering is the most rewarding future career I 

can imagine for myself. 

  0.849 

My interest in an engineering major outweighs any 

disadvantages I can think of. 

  0.823 

I want to be an engineer.   0.816 

Total Variance Explained 53.7% 
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Table 6, continued 

Survey Item 

Factor 

V
a

lu
e 

In
st

ru
m

en
ta

li
ty

 

Variance 

Explained 

The most important thing in life is how one 

feels in the long run. 

0.531  

9.0% 

It is more important to save for the future than 

to buy what one wants today. 

0.581  

Long range goals are more important than short 

range goals. 

0.784  

What happens in the long run is more important 

than how one feels right now. 

0.802  

It is better to be considered a success at the end 

of one’s life than to be considered a success 

today. 

0.492  

I will use the information I learn in my 

engineering course in the other classes I will 

take in the future. 

 0.728 

8.2% I will use the information I learn in this 

engineering course in the future. 

 0.877 

What I learn in my engineering course will be 

important for my future occupational success. 

 0.691 

Total Variance Explained 53.7% 

 

Table 7 - Factor loadings for constructs from Agency Beliefs 

Survey Item 

Factor 

Variance 

Explained 

Science 

Agency Beliefs 

Engineering 

Agency Beliefs 

Learning science will improve my career 

prospects. 

0.634  

28.1% 

Science is helpful in my everyday life. 0.885  

Science has helped me see opportunities for 

positive change. 

0.905  

Science has taught me how to take care of my 

health 

0.627  

Learning science has made me more critical in 

general. 

0.624  

Engineering can improve our society.  0.791 

29.3% 

Engineering will give me the tools and resources I 

need to make an impact 

 0.805 

Engineering can improve our quality of life.  0.921 

I see engineering all around me.  0.678 

Engineering allows me to think deeply about 

problems. 

 0.564 

Total Variance Explained 57.4% 

  



44 

 

Table 8 - Factor loadings for constructs from the "Big 5" Psychological Traits 

Survey Item 

Factor   

Variance 

Explained E
x

tr
av

er
si

o
n

 

N
eu
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ci
sm

 

A
g
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b
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n
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s 
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s 
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 E

x
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n
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C
o

n
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n
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o

u
sn

es
s 

*Am quiet around strangers 0.867     

12.1% 

*Keep in the background 0.831     

Talk to a lot of different people at 

parties 

0.659     

Am the life of the party 0.601     

*Don’t talk a lot 0.798     

Have frequent mood swings  0.707    

11.2% 

Get irritated easily  0.696    

Get stressed out easily  0.648    

Change my mood a lot  0.801    

Get upset easily  0.800    

Have a soft heart   0.656   

9.8% 

Sympathize with others’ feelings   0.896   

Am interested in people   0.512   

Feel others’ emotions   0.790   

Make people feel at ease   0.458   

*Do not have a good imagination    0.719  

8.8% 
Have excellent ideas    0.784  

Have a vivid imagination    0.817  

Am full of ideas    0.494  

*Often forget to put things back in 

their proper place 

    0.741 

8.4% *Make a mess of things     0.724 

*Avoid my responsibilities     0.520 

*Leave my belongings around     0.734 

Total Variance Explained 50.3% 

* indicates an item which was reverse coded 
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Table 9 - Factor loadings for constructs related to Math Identity 

Survey Item 

Factor Variance 

Explained Performance

/Competence 

Recognition Interest 

My parents see me as a math person.  0.775  

20.5% 

My instructors see me as a math 

person. 

 0.690  

My peers see me as a math person.  0.899  

I’ve had experiences in which I was 

recognized as a math person. 

 0.669  

Others ask me for help in math.  0.552  

I am interested in learning more 

about math. 

  0.802 

15.4% 
I enjoy learning math.   0.892 

I find fulfillment in doing math.   0.735 

I am confident that I can understand 

math in class. 

0.893   

23.8% 

I am confident that I can understand 

math outside of class. 

0.885   

I can do well on exams in math. 0.810   

I understand concepts I have studied 

in math. 

0.721   

I can overcome setbacks in math. 0.445   

Total Variance Explained 63.6% 
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Table 10 - Factor loadings for constructs related to Engineering Identity 

Survey Item Factor Variance 

Explained Performance/

Competence 

Recognition Interest 

I will feel like an engineer in 

the future 
 0.453  

19.6% 

I am interested in learning more 

about engineering. 
 0.844  

I enjoy learning engineering.  0.899  

I find fulfillment in doing 

engineering. 
 0.750  

My parents see me as an 

engineer. 
  0.744 

15.9% 

My instructors see me as an 

engineer. 
  0.847 

My peers see me as an 

engineer. 
  0.560 

I have had experiences in which 

I was recognized as an 

engineer. 

  0.451 

I am confident that I can 

understand engineering in class. 
0.859   

25.5% 

I am confident that I can 

understand engineering outside 

of class. 

0.942   

I can do well on exams in 

engineering. 
0.855   

I understand concepts I have 

studied in engineering. 
0.751   

Total Variance Explained 61.1% 

 

To investigate the relationship between physics identity and the other attitudinal 

factors, I performed a linear regression testing for association between physics identity 

and associated factors. The model was first tested as a blockwise regression (i.e., 

inserting all factors as predictors) then using reverse elimination to remove non-

significant predictors. At each iteration, the regressor with the highest non-significant p-

value (closest to 1) was removed and the regression repeated. Significance values were 

corrected for multiple comparisons. Table 11 summarizes the regression estimates in the 

final model (empty rows signify non-significant regressors that were removed in the final 
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model). VIF statistics (measuring collinearity of regressors) for the final model were all 

below 2.0, suggesting the adjusted R2 is not inflated and the regressors are not collinear. 

Table 11 - Linear model of physics identity by attitudinal factors. 

 Estimate Beta Std. Error Signif. 

(intercept) 0.010 0.000 0.188  

Belongingness 0.236 0.182 0.029 *** 

Performance Approach     

Mastery Approach     

Work Avoid     

Expectancy 0.098 0.076 0.026 ** 

Connectedness -0.065 -0.060 0.018 ** 

Instrumentality -0.094 -0.060 0.031 * 

Perceptions of Future 0.116 0.103 0.025 *** 

Value     

Grit: Persistence of Effort     

Grit: Consistency of Interest     

Engineering Agency Beliefs 0.115 0.064 0.038 * 

Science Agency Beliefs 0.210 0.163 0.025 *** 

Neuroticism     

Extroversion     

Agreeableness     

Conscientiousness     

Openness 0.091 0.083 0.019 *** 

Math Identity 0.176 0.138 0.023 *** 

*** p < 0.001, ** p < 0.01, * p < 0.05 

Multiple R2: 0.253                                                                           Adjusted R2: 0.250 

 

Physics Identity was significantly and positively associated to Belongingness 

(p<0.001), Expectancy (p<0.01), Perceptions of Future (p<0.001), Engineering Agency 

Beliefs (p<0.05), Science Agency Beliefs (p<0.001), Openness (p<0.001), and Math 

Identity (p<0.001), meaning that students who indicated higher scores on these factors 

also had higher scores, on average, in their Physics Identity. The largest effects (in both 

raw estimate and standardized beta) were Belongingness, Science Agency Beliefs, and 

Math Identity; for these, the difference between the highest possible score (on a scale 

from 0 to 6) and the lowest score amount to a difference of 1.0-1.3 in the Physics Identity 

outcome for each.  
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Physics Identity was significantly and negatively predicted by Connectedness 

(p<0.01) and Instrumentality (p < 0.05), meaning students indicated higher scores on this 

factor had lower scores on their Physics Identity measure. For the negative predictors, the 

difference between having the highest possible score (on a scale from 0 to 6) and the 

lowest possible score amounted to a predicted difference of approximately 0.39 or 0.57 in 

the Physics Identity measure. 

Overall, the model explains 25% of the variance in the measured physics identity 

scores, a moderate effect. 

Discussion and Interpretation of the Primary Model 

Math Identity has been previously studied in relation to Physics Identity 

development(Godwin, Potvin, Hazari, et al., 2013), so its presence in this regression is 

expected and unsurprising. Notably, it remains one of the strongest effects, but is smaller 

than either Belongingness or Science Agency Beliefs (both of which were themselves 

significantly associated with Math Identity). 

The Agency Beliefs factors describe a student’s perception of the important of 

science or engineering in their lives in a variety of positive ways. At this stage of their 

education, most students have not had significant exposure to many experiences which 

might be described as related to engineering or engineering contexts, as opposed to 

science (or physics in particular). For many students, science is a more familiar and 

commonly seen context in their lives, while engineering perhaps less contextualized in 

the present is something for the future (though perhaps in their perceived future). It is not 

surprising that beliefs about the ability of science to have a positive impact on the world 
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would be more closely associated with identifying as a physics person than similar beliefs 

about the same ability of engineering, which is often seen as somewhat separate from the 

sciences. Both have been used to predict choice of career, but as primarily independent 

constructs (Godwin et al., 2016). The strong association found here suggests that a more 

complex interaction of these factors may better describe how identity and agency beliefs 

interact and are associated with career choice. 

On the surface, that Belongingness strongly predicts Physics Identity can be 

understood as a reflection of the fact that Recognition beliefs are the most important of 

the three sub-constructs in the measure of Physics Identity. Recognition from peers and 

teachers is important to identity development (Pittman & Richmond, 2008) and is 

associated with feeling that one belongs in their community. However, if Belongingness 

is predicted with the three sub-constructs of Physics Identity as regressors, then 

Performance/Competence (p<0.001) and Interest (p<0.001) are significantly and 

positively associated with Belongingness, and Recognition is not. See Table 12  for 

details on these associations.  

Table 12 - Linear regression predicting Belongingness with Physics Identity 

 Estimate Beta Std. Error Signif. 

(intercept) 3.441 0.000 0.059 *** 

Performance / Competence 0.253 0.341 0.021 *** 

Recognition 0.014 0.021 0.017  

Interest 0.053 0.079 0.017 ** 

*** p < 0.001, ** p < 0.01, * p < 0.05                                             Adj. R2: 0.1694 

 

One explanation of this relationship is that Belongingness in an engineering 

program depends on the acceptance of one feels from their peers, who see classmates 

who are highly capable as being valuable additions to the classroom, whereas those who 

are not highly competent could be seen as holding back the rest of the class by asking 
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questions and needing more time to work through explanations, thereby engendering 

feelings of hostility from their classmates, whether real or perceived. These feelings 

could be generated entirely by the student with low competence beliefs because they 

expect their classmates to be upset and dismissive if they can’t keep up with the rest of 

the classroom. So, while being recognized by their peers is important to feeling like they 

belong, it appears that this facet is less important in the face of perceived judgment from 

those same peers on one’s proficiency and competence. 

Expectancy describes how the student sees their future success in this class, 

whether or not they thing they will succeed. Like the Belongingness construct, I argue 

that this association with Physics identity can be best understood in terms of how it 

relates to the student’s Physics Performance/Competence beliefs. If a student feels they 

can do physics well, then their likelihood of success in their introductory engineering 

course (which has strong connections and overlaps with physics content in many areas) is 

much higher, and so a belief in one would be associated with belief in the other. Of 

course, the associations present in this correlational regression analysis does not imply a 

causality. I hypothesize that in fact the causality is actually reversed, and that high 

Performance/Competence beliefs lead to higher expectations of success. As a quasi-trait, 

Physics Identity is stable over short time periods (Potvin & Hazari, 2013). On the other 

hand, Expectancy is a judgement about expectations of success for a very particular task 

(in this case, succeeding in an engineering class). Therefore, I expect that incoming 

Physics Identity beliefs inform their expectations of success in an environment where 

physics competence is relevant. High levels of Expectancy can certainly influence future 

Physics Identity as predictions of success are either validated, thereby increasing a 
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student’s belief in their ability to do physics tasks, or repudiated, and their beliefs in their 

own ability are diminished. However, as an interaction between a longstanding identity 

and a short-timescale belief measured at the same point in time, I suspect that identity 

beliefs inform the expectations of success in the moment, but this would need to be 

further studied in another analysis. 

Of the “Big 5” Personality Traits, only Openness to Experience was found to be a 

significant predictor of Physics Identity, with a small effect size. Facets of Openness to 

Experience include imagination, intellectual curiosity, and a willingness to experiment, 

all of which are traits and behaviors which may be highly valued and promoted in the 

framing of the Physics community so its presence as a significant predictor is perhaps not 

unexpected. 

A coherent explanation for the significant negative predictors—Instrumentality 

and Connectedness—is more nuanced. High scores in each of these factors indicate that 

the student has some strong sense of a specific future for themselves. Connectedness 

speaks about personal preference for making plans for the future, having goals, and 

thinking about what they want to do, and Instrumentality describes how important they 

see their current class to this future. While these actions can be positive, when asking a 

student in an engineering class these strong plans are most likely for a concrete path or 

specific goals in engineering. While Physics Identity is a strong predictor of choice and 

persistence in engineering, these associations are all founded on measurements of early-

college identity, before most students have had many authentic engineering experiences 

or is deeply involved with the culture of engineering. Less research has focused on the 

evolution of this association through a student’s college experiences, but \cite{Zavala and 
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Dominguez, 2016} have shown a marked decrease in students’ perceptions of the 

relevance of Math and Physics to their engineering education and careers by their third 

semester of college engineering studies. Thus, while many students may have unclear 

ideas of exactly what it means to do engineering, those who are disposed towards 

planning for the future (i.e., those with high Connectedness and Instrumentality scores) 

may have a clearer picture, and so associate themselves less with physics, and more with 

engineering. The students with high scores on these factors may be more fully committed 

to an engineering-related future, where their focus on a specific future and their courses 

relevance for that future narrows their identification with identities that are not perfectly 

aligned with how they see themselves in the future. 

In contrast to this, however, there is a positive association between Perceptions of 

Future, a factor describing how students imagine a positive future for themselves through 

a career in engineering, and Physics Identity, which seems to run exactly opposite to the 

explanation above. After all, if a student has a positive concept of a future in engineering, 

isn't that the same as making plans for a particular future? I argue no; for students without 

many authentic engineering experiences in their history, their concept of “a future in 

engineering” at the beginning of college may be more nebulously formed than for a 

student who tends to make specific plans for the future, and thus may be more informed 

of the realities of what engineering entails. In this case, the student might fall back on 

other related identities (e.g. math, science, and physics, which have been shown in prior 

research to be strongly associated with identifying as an engineer) to shape their idea of 

what a future in engineering would look like and entail. 
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In summary, I found the largest associations with Physics Identity to be feelings 

of belongingness in engineering and one’s engineering class (Belongingness), beliefs in 

the ability for science to have a positive effect on the world (Science Agency Beliefs), 

and seeing oneself as a math person (Math Identity). Secondary, weaker associations 

were found with how students view the future and its relationship to their current 

educational trajectory (Perceptions of Future), along with a sense of imagination and 

intellectual curiosity (Openness), plus a belief in the ability of specifically engineering to 

have a positive effect on the world (Engineering Agency Beliefs). The largest effects are 

all of things which have been previously well-studied in tandem with Physics Identity, 

though now in a combined form, and with some added nuance.  

The inclusion of the future-pointing affective constructs from Future Time 

Perspective add an additional dimension to the discussion of physics identity, especially 

in the context of Hazari’s quantitative framework (2010). Namely, not only is physics 

identity a time-variant quantity, which was previously well-understood, but also that 

student perceptions of the future (in the general sense, not strictly in terms of the named 

attitudinal factor) are associated to their identity in the present. While one’s identity is 

shaped by one’s experiences, these experiences are colored by expectations and hopes 

about what the future will look like, and whether that future contains a congruous identity 

as the one being formed in the present. Nevertheless, prior research has still shown a 

positive association between these factors and overall performance and motivation 

(Simons, Vansteenkiste, Lens, & Lacante, 2004b) when they are consistent with the task 

at hand. That is, despite the negative association with physics identity, students with high 
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Connectedness or Instrumentality may still gain the desired associated benefits in their 

physics classes if the connection between physics and their futures is made clear. 

Using these measures of students’ interest, I expanded the previous regression 

analysis to consider interest in various majors. Models were considered in parallel; each 

interest was included in the model separately, for a total of 17 additional models, which 

are summarized in Table 13, and the p-values of these associations were manually 

corrected with a Holm-Bonferroni factor to account for the fact that so many hypotheses 

were tested in parallel. 
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Table 13 - Summarized expanded models  

Statistical significance: *** p < 0.001, ^^ p < 0.01, º p < 0.05, after being corrected for multiple 

comparisons. Blank cells in the table represent terms which were not statistically significant. For Major 

Interest, + represents a positive estimate, while – indicates a negative estimate. Bolded Adjusted R2 values 

indicate an increase of at least 1% (absolute) over the original model. 
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Original *** ^^ ^^ º *** º *** *** ***  0.250 

AAE *** *** º  ***  *** ^^ *** +*** 0.289 

ABE_BSE *** *** ^^ º *** º *** *** ***  0.247 

BE_BME *** *** ^^ º *** º *** *** *** -*** 0.254 

CME *** *** ^^ º ***  *** *** ***  0.244 

CVL *** *** ^^ º *** º *** *** *** +º 0.251 

CE_CSE *** *** ^^ º *** º *** *** ***  0.249 

CON *** *** ^^ ** *** º *** *** *** +*** 0.253 

EE *** *** ^^ º *** º *** *** *** +*** 0.258 

EP *** ^^  º *** º  *** *** *** +*** 0.351 

EEE *** *** ^^ º *** º *** *** ***  0.245 

IND *** *** ^^ º *** º *** *** *** +^^ 0.255 

IT *** *** ^^ º *** º *** *** ***  0.248 

MSE *** *** ^^ º *** º *** *** *** +*** 0.252 

ME *** ^^ ^^ º ***  *** ^^ *** +*** 0.281 

MIE *** *** *** ^^ *** º  *** *** *** +*** 0.262 

NUKE *** ^^ ^^ º *** º *** *** *** +*** 0.263 

O-STEM *** *** *** ^^  *** º *** *** *** +^^ 0.251 

 

Results and Discussion of the Secondary Models 

Of the majors probed in Q14, student interests in the following majors were found 

to be significantly and positively associated with Physics Identity: 
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 (AAE) Aero / Astronautical Engineering (p<0.001) 

 (CVL) Civil Engineering (p<0.05) 

 (CON) Construction Management Engineering (p<0.001) 

 (EE_ECE) Electrical Engineering / Electrical and Computer Engineering 

(p<0.001) 

 (EP) Engineering Physics (p<0.001) 

 (IND) Industrial Engineering (p<0.01) 

 (MSE) Materials Engineering / Material Science and Engineering (p < 0.01) 

 (ME) Mechanical Engineering (p<0.001) 

 (MIE) Multidisciplinary / Interdisciplinary Engineering (p<0.001) 

 (NUKE) Nuclear Engineering (p<0.001) 

 (O-STEM) Other STEM-related degree (p<0.05)  

On the other hand, interest in Bioengineering / Biomedical Engineering (p<0.001) 

was significantly and negatively associated with Physics Identity. 

The majors for which student interest did not include a statistically significant 

effect were Agricultural and Biological / Biosystems Engineering, Chemical Engineering, 

Computer Engineering / Computer Science Engineering, Ecological and Environmental 

Engineering, and Information Technology. 

Adding “interest in pursuing this major” to the regression tended to affect the 

resulting adjusted model in one a few broad ways.  

A. For the first group, defined by a statistically significant association between 

interest and physics identity coupled with a moderate to large increase in 
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explained variance in the model. The majors in this group are aerospace 

engineering, mechanical engineering, nuclear engineering, engineering physics, 

and multidisciplinary/interdisciplinary engineering.  

B. For the second group, I see statistically significant associations, but with a smaller 

effect; the added interest term increased the variance explained by only a small 

amount compared to the original model. The engineering majors in this group are 

civil engineering, construction management engineering, industrial engineering, 

electrical engineering, and material science engineering. This group also included 

interest in “other STEM-related degree”. 

C. The third group consists of all the other majors which showed no statistically 

significant positive association with physics identity and showed no improvement 

in the variance explained. The majors in this group are bioengineering / 

biomedical engineering, which actually showed a statistically significant negative 

association with physics identity, agricultural / biosystems engineering, chemical 

engineering, environmental/ecological engineering, computer engineering, and 

information technology.  

Differences with the Primary Model 

The original model explained 25% of the variance in Physics Identity scores. 

Adding major interest to the model improved this value for a handful of majors (i.e., 

those in the Group A) by at least 1% more, up to 10% for engineering physics. 

I found no statistically significant difference in the regression coefficients for any 

of the original factors between the primary model and the models with an added Interest 



58 

 

term, even though the calculated significance value for the new estimate may indicate 

that one of the factors is no longer statistically significant. For example, when adding 

Interest in Aerospace Engineering to the model, I find after correcting for multiple 

comparisons that the terms for Instrumentality and Engineering Agency Beliefs are no 

longer statistically significant. Prior to the additional term, they were each significant at 

the p<0.05 level, and after, Instrumentality had a p-value of 0.052, and Engineering 

Agency Beliefs had a p-value of 0.068. However, when investigating whether there was a 

statistically significant difference between the estimates for these (and all the other) 

factors had changed between models, I were unable to reject the null hypothesis that the 

estimates were the same between models (p>0.10 for all comparisons).  

 In summary, the model was improved incrementally, but not hugely or in a 

statistically significant step. No significant differences were seen in the associations 

between the affective factors in the primary model after including interest in particular 

engineering majors. While this may be a result of the differences between being too small 

to distinguish, all differences between effect sizes were less than 0.035, which is a very 

small difference. Therefore, the answer to the second research question of whether there 

is a difference in the associations between physics identity and related factors when 

mediated by interest in an engineering major appears to be no. 

Implications and Directions for Future Work 

Because introductory physics classes often serve many departments to provide a 

background in physics knowledge, understanding how members of these departments 

may see themselves as related (or not) to physics could help improve this experience, 
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increasing both student affect and performance. The goal of increasing physics identity 

among engineers participating in introductory physics classes is not meant to pull them 

away from other interests, but rather to tap into the benefits related with such an identity 

in order to make their interaction with physics more rewarding, both in terms of increased 

knowledge gains and increased affect.  

It’s worth noting that using physics identity as a proxy indicator for increased 

interest, persistence, and performance is not always appropriate. The negative 

associations between physics identity and the Future Time Perspective constructs of 

Connectedness and Instrumentality suggest that students with a strong and specific sense 

of their future tend to identify less with physics, even though these students are more 

likely to have the motivation and interest to persist in their engineering programs (Kirn et 

al., 2014). This hypothesized decoupling of physics identity and engineering identity is 

further investigated in Chapter 4. 

Primarily, these results suggest the need for a more complex and flexible model of 

physics identity as applied to engineering students, particularly through the model of 

engineering identity. The structural model of engineering identity proposed by Godwin et 

al. (2016) is a simple and effective model, but may need to be revised and expanded to 

include other conceptions of what it means to be an engineering. This expansion may 

include other domain identities in addition to physics (e.g., chemistry, biology, computer 

science), as well as additional affective constructs from Future Time Perspective. 

The lack of association between interest in broad categories of engineering and 

physics identity, a construct underpinning the construction of engineering identity in 

quantitative models and theory (Godwin, 2016; Godwin et al., 2016; Katehi et al., 2009), 
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suggests something is missing, and that the engineering identity construct is not 

accurately capturing what it means to identify as an engineering for the full spread of 

students. Further work investigating this relationship and future extensions to the model 

could extend the analysis in this chapter to look at Engineering Identity as a predicted 

construct, as well as examine additional domain identities that may be more relevant to 

particular engineering disciplines. 

Limitations of this Study 

The schools sampled for student data were not randomly selected but were chosen 

because they were the four universities of the members of the research collaboration. All 

four schools are large public research institutions (three are R1, one is R2). Their 

populations are not fully representative of the U.S. engineering student population, the 

college student population, or overall population of the country. Within the participating 

schools, the survey had high response rates, over 70% of the population of interest at the 

four schools in the Fall 2015 cohort. Thus, these results are well-representative of the 

schools from which they are drawn, but nevertheless, should not be assumed to be fully 

generalizable to all engineers or engineering programs. 

Though the use of Interest in a Major as a proxy for Member of a Major was 

justified with concurrent criterion-related validity testing, it is still a potential limitation 

on the interpretation of the results. Discussion and implications drawn about, e.g. 

“mechanical engineers”, are actually only able to say something about “people who 

expressed high interest in mechanical engineering”, which broadens the scope to include 
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more than just students who are in that major. This broadened scope may be a strength 

and a weakness of the analysis. 

The regression analyses are correlational in nature, and the study design was non-

experimental in nature. Combined with a lack of time-series or longitudinal data, these 

limitations prevent anything definitive from being said about the causality or primacy of 

these associations. 
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CHAPTER III: TOPOLOGICAL MAPPING OF STUDENT AFFECTIVE FACTORS 

Introduction 

In this chapter, I create a map5 of the space of affective constructs previously 

discussed in Chapters 1 and 2. I begin by introducing the theoretical motivations for this 

new analytical methodology, then describe the new technique of topological data analysis 

(TDA) and how it will be applied to the research data. 

I finish by discussing several interesting results that can be gathered from the 

resulting map, including the presence of a large “normative” group defined by the data as 

the characterizing the most popular set of beliefs, as well as a limited number of 

moderately-populated deviations from this profile. I also describe differences between the 

normative group and the students who were assigned to no group in terms of traditional 

demographic markers.   

In this chapter I investigate the following research questions: 

1. How are students distributed in the space of affective beliefs? 

2. What demographic differences exist between students holding normative beliefs and 

those with non-normative beliefs? 

Answering these questions can help deepen and extend the understanding of how 

various attitudinal factors relate to each other that was started in Chapter 2. Further, 

answering the second question will help clarify how related the concepts of normativity 

                                                 

5 In this context, a map is a two-dimensional representation of a high-dimensional set of data that encodes 

several levels of relational information between the data. A formal definition of these maps and their 

construction detailed in this chapter. 
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in terms of demographics and attitudes are to each other, i.e. if the patterns of 

concentrations in beliefs are demographic-dependent. 

Background 

Challenges of Intersectionality in Quantitative Research 

To date, much of the quantitative research on diversity in STEM has first binned 

students by demographic categories (e.g., male or female, etc) and only then examined 

differences in students’ attitudes or beliefs. This approach is limited in several ways 

(Pawley & Slaton, 2015). First, students at the intersections of multiple underrepresented 

categories often represent a small proportion of any sample of students. These small 

numbers can result in several problems to quantitatively analyze that result in these 

students being diminished in importance. Small groups of students can be viewed as 

“anomalies” not representative of the whole and, hence, dismissed. Additionally, the 

statistical power to detect differences or understand students at multiple intersections is 

difficult or impossible to achieve in smaller datasets. Finally, these small numbers of 

students can be disaggregated from the larger dataset in ways that risk the re-

identification of participants and make their responses non-anonymous, which has ethical 

implications (including violations of standard IRB protocols).  

The second issue in quantitative research on diversity is that many statistical 

techniques rely on various parametric or non-parametric data assumptions (including 

normality, homoscedasticity, etc.) and often use group averages to compare between 

groups or minimize the error of models. This approach can result in findings that 

generalize for fixed demographic categories. As a result, many studies make claims for 
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“all” women or “all” women of color without recognizing the proper variance and 

systematic effects within groups and so lose an understanding of the nuance of 

individuals’ experiences. These issues limit the power and interpretability of approaches 

based on binning individuals by researcher-defined categories a priori as a way to 

understand how a diverse population of students navigate engineering. 

Another Approach to Understanding Student Diversity: Cluster Analysis 

One possible approach that handles the issue of binning students is provided by 

cluster analysis, an alternative, quantitative method of grouping students, which can use 

other criteria than factors like demographics. At its core, cluster analysis uses a similarity 

measure to determine which things (data points, students, or something else) are “close” 

to each other, and which ones are far away and then grouping the close things together. 

Groups which are close to each other and far from other things are called clusters. 

Groupings of the data are therefore determined by the variance in the data (and 

choice of clustering algorithm), not by a priori imposition. An example of an external 

grouping imposed on the data would be organizing students by gender. One might argue 

that such a grouping is “determined by the data”, as each student provides their own 

gender and its part of the data set, but the categories to which the students can belong is 

predetermined by the researchers (which often have unstated and unexamined value 

judgments present in the choice of categories). Cluster analysis seeks to discover 

potentially new categories that do not yet have a label and attach one, so that a student 

could, in addition to being described with a particular gender identity or ethnicity, also be 
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described as a “member of group A” which carries its own information connotations, 

emergent from the data. 

Topological Data Analysis as a Means to Cluster 

Though there are several methods which are characterized under the framework 

of Topological Data Analysis (Carlsson, 2009), the current study focuses on the so-called  

“Mapper” algorithm (Singh, Mémoli, & Carlsson, 2007) as the method of choice. 

Originally designed as a way of describing the topology of point cloud data for image 

processing, I adapted it to use with human subjects/educational data. Some technical 

features of Mapper have been modified for ease of implementation in the programming 

language R, though the eventual result is identical. 

By “point cloud data” I mean that each data point is represented by a point in 

some vector space, with numerical values for each dimension. The dimensions can 

represent, e.g., individual questions, or factors constructed out of multiple questions with 

a factor analysis. In the current work, these numbers represent the responses of students 

that used to cluster them together based on their similarity or closeness. 

Topological Data Analysis in InIce 

I turned to topological data analysis because I wanted to find a way to do a 

quantitative analysis that respected the intersectional identities of the participants, and 

made no presuppositions about the sort of structures I would find. I hypothesized there 

would be one large group and a handful of smaller subgroups of similar density, 

separated in the space of beliefs; subsequent analysis showed the initial hypothesis was 

only partly correct, but had a more traditional cluster analysis been used and forced to 

rastreve
Highlight

rastreve
Highlight



66 

 

produce multiple clusters through choice of parameter, I could have obtained a result 

which suggested such a pattern existed. 

Methodology 

In this section, I begin by briefly describing the InIce survey as a reminder, and 

discuss the choice which attitudinal factors were used. For more details, please see 

Chapter 1, where I discuss the development and deployment of the survey, and Chapter 2, 

where I outline the construction of the affective constructs from each theoretical 

framework. I then introduce the Mapper algorithm, a form of topological data analysis 

which reduces high-dimensional data to a two-dimensional representation showing the 

how the data are distributed in relation to themselves. From there, I discuss the steps 

taken to prepare the student survey data for mapping and the researcher choices involved. 

Description of INICE Survey 

A pilot survey was deployed at three of the four institutions and had 537 

responses. The results of the pilot were used to confirm the factor structure of the 

questions and select the questions which best-illuminated the factor in question. The final 

version of the survey was deployed at all four institutions in the Fall of 2015, and had a 

total of 2916 responses, distributed similarly to the relative sizes of the engineering 

student populations at each school. The survey was given to students in the institution-
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equivalent introductory engineering course, intending to capture a broad cross-section of 

incoming freshman engineers6.  

Attitudinal Factors 

The factor analyses produced 26 theoretical constructs underlying the questions 

analyzed. These theoretical constructs were drawn from a variety of theoretical 

frameworks, including Achievement Goal Theory, Expectancy Value Theory, Future 

Time Perspective, Grit, the “Big Five” Psychological Traits, and Identity. For more 

information on these constructs, including which questions loaded into each factor, see 

page 39. 

One difficulty of analyzing high-dimensional data is the so-called “curse of 

dimensionality”, which describes how, as the number of dimensions increases, the 

difference in distances between different pairs of points in the sample get smaller, and 

distance functions become less useful in distinguishing between points. A rule of thumb 

when trying to detect clusters in 𝑑 dimensions is that a sample size on the order of 

𝑁 ~ 2𝑑 is required (Formann, 1984). With a sample size of 2916, this corresponds to a 

dimension of approximately 11.5, or between 11 and 12. To maximize the ability of 

mapper to detect interesting features in the data, the number of factors used in the map 

(and thus the dimensionality of the space) was reduced following a multi-criterion 

analysis summarized in a decision matrix (see Table 14). Each factor was given a score 

                                                 

6 Included in the survey was a question about which year the student was, and whether they were a transfer 

student. This was most relevant for the students from FIU, which has a relatively higher fraction of transfer 

students and students switching into engineering after several years in college. 
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on four dimensions, based on how that factor related to the others on that dimension. To 

maximize the ability of the map to detect variations in the structure of the data, including 

subgroups, factor variance and uniqueness were highly weighted in the overall decision. 

A factor with high variance is more likely to spread the students apart in that dimension, 

making it easier to detect differences. The factor loadings dimension measured the 

strength of loading, how closely aligned the questions which formed the factor were 

related to each other. This dimension was given relatively low priority because the 

average factor loadings for the factors were on average high (mean 0.7461, ranging from 

0.6377 to 0.8824). Theoretical interest is a parameter chosen by the research team, 

corresponding roughly to how interested the researchers were in including that factor in 

the final map. Factors relating to Identity, Future Time Perspective, and Belongingness 

were ranked highly here, as the results of prior work showing their interrelated 

importance for engineering students, but this dimension was weighted less strongly than 

either factor variance or factor uniqueness. 
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Table 14 - Decision matrix to select a subset of factors for use in the Mapper algorithm.  

Each factor was scored from one to three on four dimensions, according to how that factor related to the 

others on that dimension. In each dimension, higher values are better. Variance indicates the relative 

variance of that factor among the students. Factor loadings indicate the relative average loading of 

questions in that factor, according to the factor analysis which identified it. Theoretical interest is a 

parameter decided by the research group, corresponding roughly to how interested the researchers were in 

seeing that particular factor in the final map. Uniqueness indicates how uncorrelated the factor tended to be 

from the other factors; factors which were highly correlated with other factors received lower scores. 

Factors with weighted scores of 100 or greater (bolded) were in the top half of scores and were selected for 

use in the mapping. 

 

Variance 

Factor 

Loadings 

Theoretical 

Interest Uniqueness 

Weighted 

Score 

Weights 15 5 10 15  

Factors      

Belongingness 2 3 3 2 105 

Performance Approach 2 3 1 3 100 

Mastery Approach 1 2 1 3 80 

Work Avoidance 3 3 1 3 115 

Expectancy 2 3 1 2 85 

Connectedness 2 2 3 3 115 

Instrumentality 1 2 3 3 100 

Value 3 1 3 3 125 

Perceptions of Future 2 2 3 3 115 

Grit: Persistence of Effort 2 1 2 2 85 

Grit: Consistency of 

Interest 
3 1 2 2 100 

Engineering Identity: 

Performance / 

Competence 

2 3 3 2 105 

Engineering Identity: 

Recognition 
2 1 3 2 95 

Engineering Identity: 

Interest 
1 2 3 2 85 

Engineering Agency 

Beliefs 
1 2 2 1 60 

Science Agency Beliefs 2 2 2 1 75 

Neuroticism 3 2 1 3 110 

Extraversion 3 2 1 3 110 

Agreeableness 2 1 1 3 90 

Conscientiousness 2 1 1 3 90 

Openness to Experience 2 2 1 3 95 

Physics Identity: 

Performance / 

Competence 

2 2 2 1 75 

Physics Identity: 

Recognition 
3 2 3 1 100 

Physics Identity: Interest 1 2 3 1 70 

Math Identity: 

Recognition 
2 2 3 1 85 

Math Identity: 

Performance / 

Competence 

2 2 2 1 75 

Math Identity: Interest 1 3 3 1 75 
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The factors with the highest overall scores in the decision matrix were selected to 

form the basis of the map. These factors were, in descending order of overall score, 

Value, Work Avoidance, Connectedness, Perceptions of Future, Neuroticism, 

Extraversion, Belongingness, Performance Approach, Instrumentality, Grit: Consistency 

of Interest, Engineering Identity: Performance / Competence beliefs, Engineering 

Identity: Recognition beliefs, and Physics Identity: Recognition beliefs. Because four of 

these factors were tied for the same score, I decided that it was better to keep the number 

of factors at thirteen, slightly above the number predicted by the rule of thumb for my 

sample size, rather than removing all four or making an arbitrary choice between the four 

after designing and implementing a design matrix to make such a decision with as much 

objectivity as possible. As a result, I expect that the resulting space will be a little 

sparsely populated, as opposed to being overcrowded, but Mapper’s ability to handle 

underpopulation is superior to its ability to handle overpopulation when the dimensions 

are highly discretized, as is the case with the factors in the InIce survey. 

Some, but not all, of the factors found to be significant predictors of physics 

identity in Chapter 2 appear in this list; the choice of factors used to create the map was 

made independently of the results of that analysis, though the relationships found were 

considered when determining the “theoretical interest” of each factor. In other words, the 

goal of making the Mapper map is to create a picture of the space of attitudes which are 

all related to physics identity, and using too many of those factors at once would, in fact, 

reduce the ability of Mapper to resolve differences between groups of students because of 

the increased collinearity of the basis vectors. 



71 

 

Survey Demographics and Self-Identification 

The demographic questions in the survey (Q15-Q22, see Appendix, page 159) 

were designed to be as inclusive as possible and allow a broad range of self-

identification. Because I am performing the cluster analysis on data which ignores the 

demographic information, there is more freedom in how demographic questions are 

asked. For example, rather than asking a binary gender question, students were provided 

a range of options and allowed to combine them in whatever fashion accurately reflected 

their gender identity. Though the vast majority of students (97.4% of responses) 

responded with one of the two traditional binary options (“Female” or “Male”) 

exclusively, nevertheless 70 (2.6% of responses) students responded in some other 

fashion, with a total of thirteen other unique combinations of answers. 

One issue that arises when increasing the number of categories to which someone 

can subscribe is a fracturing of the measurement of the population. When groups become 

highly specified according to several factors, the number of respondents which match 

these factors exactly can become very small, which threatens classic quantitative analytic 

techniques that rely on having a high enough N to have acceptable statistical power. The 

only available solutions included either collapsing those categories into a single “Other” 

category, or throwing out those responses entirely to concentrate on the categories with 

sufficiently large representation. The first option is distasteful for several reasons, 

including clearly “Othering” these individuals (Jackson II & Hogg, 2010), and because it 

collapses the variance in the sample that previously existed because of those responses 

and by treating them as an indistinguishable category. The second option means the 
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voices of those who responded in a particular category are formally ignored from 

analysis, which also reduces sample variance and representativeness. 

For legacy compatibility, one would prefer new data collection to be backward 

compatible. This would allow us to compare current information and results more easily 

with the past. However, maintaining compatibility is not a sufficient reason to continue 

poor practices with well-known problems, so something should be changed. However, 

the question can be expanded in such a way that it is a natural extension of previous 

forms of the question. Doing so allows it to collapse back into previous iterations and 

thereby be comparable to old data sets.  As an example, consider a question which 

includes 6 options for gender identity, along with another fill-in-the-blank option, where 

students can select all options which apply to them. This can be returned to the classic 

“male/female/other” paradigm by taking every response which marked “male” but not 

“female”, the responses which marked “female” but not “male”, and the responses which 

marked something but didn’t include either “male” or “female”. A question about 

race/ethnicity which includes “select all that apply” can be returned to the single selection 

version by grouping everyone who responded with more than one answer into the NSF 

category “two or more races/ethnicities”. 

Requirements to perform TDA using Mapper 

Mapper was originally constructed for numerical data (Singh et al., 2007). 

However, the algorithm in fact only requires a metric space, like most cluster analysis 

algorithms. If a coherent definition of pairwise distance between every point can be 

constructed, then Mapper can construct a map of the topology of that space, but 
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interpreting the resulting map may be more difficult than if the data were embedded in a 

high-dimensional vector space. One possible alternative distance function involves using 

the correlation between two sets of responses, which would allow a mixture of 

quantitative and qualitative responses to be used in the mapping. Formally, whichever 

function is used to calculate distances must satisfy certain criteria. A distance function on 

a given set of points, 𝑀, is a function 𝑑: 𝑀 𝑥 𝑀 → ℝ that satisfies the following 

conditions: 

1. Non-negative: 𝑑(𝑥, 𝑦) ≥ 0, and 𝑑(𝑥, 𝑦) = 0 iff 𝑥 = 𝑦 

2. Symmetric: 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥)  

3. Triangle inequality: 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) for ∀𝑦. 

Because Mapper requires a metric space, student responses which are missing 

values in the dimensions under consideration pose a problem to further analysis. Because 

the students must exist somewhere in the space and have a measurable distance to each 

other point in order to be clustered, the algorithm requires there be no missing values. 

One approach to address the issue of missing values in the data is to imputing the missing 

values using a maximum-likelihood estimate (Little & Rubin, 2014), and then analyzing 

the complete data set. Imputation estimates what a student’s response to a question would 

be if the question had been answered by analyzing the pattern of their other answers, and 

comparing them to the distributions of responses to those questions across all responses. 

The missing value is then estimated based on the distribution of how students with 

similar response patterns on the non-missing questions answered the missing item. The 

response with maximum likelihood according to this estimate is then selected and filled 
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in. Imputation algorithms iteratively fill the missing values from the questions with the 

fewest missing responses to most.  

In addition to the vector of numbers representing a student’s position in this point 

cloud, Mapper requires another number for every data point, a one-dimensional function 

called a filter function. This filter function is used during the iterative clustering process 

to chunk the data into smaller pieces for analysis, and forms the basis of the shape of the 

resulting map. Singh et al.(2007) define the filter function for a space X as a continuous 

map 𝑓: 𝑋 → 𝑍 to a parameter space 𝑍 which is equipped with a covering 𝒰 = {𝑈𝛼}𝛼∈𝐴 

for a finite indexing set 𝐴, and notes that since 𝑓 is continuous, the set of 𝑓−1(𝑈𝛼) form 

an open covering of 𝑋, defined as �̅�. 

In other words, the filter function assigns to each data point a real number in a 

continuous fashion, which will be later used to iteratively cluster data with similar filter 

values. One example such function would be a local density estimate7. The range of 

values for the filter function is the broken into a number of overlapping subsets. For 

example, if the filter (the parameter space 𝑍) ranged from 𝑈1[0,1), it could have three 

subsets (coverings 𝑈𝛼), 𝑈1 = [0,0.5], 𝑈2 = [0.25,0.75], 𝑈3 = [0.5,1) which together 

span the entirety of 𝑍. The coverings of 𝑋 are the sets of points which are assigned to 

each range of those filter values. 𝑓−1(𝑈1) = all points in 𝑋 which were assigned a filter 

value by 𝑓 that is in the range [0,0.5]. Notice that if the {𝑈𝛼} overlap, the corresponding 

                                                 

7 While the density of the space of the point cloud is in actuality a series of delta functions centered at each 

point, in the assumption that the data was sampled from an underlying continuous distribution function the 

density at a point can be estimated using one of several techniques, including maximum likelihood 

parameter estimation, or non-parametric k-nearest neighbors density estimation. 
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sets in �̅� will likewise be overlapping. That is, the same point in X will be a member of 

multiple sets in �̅�.  

Choosing an appropriate filter function is key to getting the most out of the 

algorithm, because different functions will result in different maps from the same data, in 

the same way that a cylinder looks different if projected from the side (i.e. so it becomes 

a rectangle) versus the top (so it becomes a circle). Depending on the complexity of the 

underlying topology, certain filter functions may reveal different aspects of the data. The 

choice of covering, including the number of covers and the amount of overlap between 

covers, is another important researcher-driven choice which can change the shape of the 

resulting map.  

The last requirement to perform TDA using Mapper is a choice of 𝜖, which 

dictates the distance under which two points are considered close enough to be clustered 

together. For a choice of epsilon, one can construct a Vietoris-Rips complex (de Silva & 

Ghrist, 2007), defined as follows: given a set of points 𝑋 = {𝑥𝛼} ⊂ ℝ𝑛 in Euclidean n-

space and a fixed radius 𝜖, the Vietoris-Rips complex of 𝑋, 𝑅𝜖(𝑋), is the abstract 

simplicial complex whose k-simplices correspond to unordered (k + 1)-tuples of points in 

𝑋 which are pairwise within Euclidean distance 𝜖 of each other. For the purposes of 

Mapper, this complex used to find connected components; all k-simplices with non-

empty intersections are connected together into a single connected component. For 

generalized distance functions and metric spaces (i.e. non-Euclidean), the usage of the 

Vietoris-Rips complex can be generalized for this algorithm, and instead consider the sets 

of points 𝑋𝑖 = {𝑥|∃𝑦 ∈ 𝑋𝑖, 𝑑(𝑥, 𝑦) < 𝜖}. Each point in 𝑋 is a member least one 𝑋𝑖, 

because every point is zero distance from itself, and a member of at most one 𝑋𝑖.  
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In summary, in order to create a map using the Mapper algorithm, the researcher 

must choose: 

1. The data to be mapped. 

2. A distance function or metric for calculating pairwise distances between each data 

point. 

3. A filter function mapping the data to the real numbers, along with a set of 

coverings, which generally involves a choice of the number of sections to use to 

form the covering and the percentage by which they should overlap. 

4. A distance 𝜖 to create sets of connected points. 

The Mapper Clustering Algorithm 

With the requirements met, the data can be mapped.  

For each filter range 𝑈𝛼, the associated points in 𝑓−1(𝑈𝛼) are grouped into 

clusters. If the connected components were calculated beforehand, then at this step the 

connected components of 𝑓−1(𝑈𝛼) are found. For ease of calculation in R, I instead 

calculated the connected components at this step for each 𝑈𝛼, using simple linkage 

agglomerative hierarchical clustering, and cutting the resulting dendrogram at height 𝜖. 

The net result was the same: I had a list of the connected components of X which map 

into each filter range. 

Equipped with these connected components formed from subsets of the original 

data set, the fact that the filter ranges mapped single points in 𝑋 into (potentially) 

multiple connected components, corresponding to different (but overlapping) filter 

covers. If the overlap between successive 𝑈𝛼 is no more than 50%, then a single point can 
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be mapped to at most two covers. If two covers contain the same point, then the 

connected components containing that point are overlapping, and are linked together. 

The drawing of the map proceeds simply from this information, using the 

language of network analysis: nodes and edges (Wasserman & Faust, 1994). Connected 

components in each filter range identified in the previous steps are drawn, roughly 

ordered by filter value for simplicity. Literal x- and y-coordinates of nodes in this 

representation have no meaning; the only relational data is conveyed by the edges, and 

the entire network can be stretched, twisted, etc. without changing this information. 

However, for the sake of clarity, the network is drawn as simply as possible, with 

minimal self-crossing and entanglement. Once all the nodes have been drawn, any nodes 

which represent overlapping connected components are joined together by an edge. The 

resulting network is called a map.  

If the data is simply a large cloud of multivariate normal point data, then a final 

map using a filter such as density will look approximately like a string of overlapping 

nodes, terminating at lower filter values with brief fragmentation into tiny tails, followed 

by a cloud of disparate noise (points that are not connected to others in any large 

structure). Larger tails, or tails which separate from the main chain at lower filter values, 

are evidence of a more complicated structure. Forks at the higher-density end of the map 

indicate multiple, separable dense cores in the point cloud. 

Chosen Filter Function for InIce Data 

Because I am searching for groups of like-minded students in the space of beliefs, 

I chose a k-nearest-neighbors (knn) density estimate for the filter function. Students with 
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high local density estimates have many other students nearby (who thus have similar 

beliefs). The density at each point 𝑥 ∈ 𝑋 ∈ ℝ𝑑 was estimated as �̃�(𝑥) =
𝑘

(𝑛 𝑅𝑥
𝑑 𝑐𝑑)

 where 

𝑐𝑑 is the volume of a unit ball in ℝ𝑑, 𝑛 is the total number of data points, and 𝑘 was the 

number of nearest neighbors to use when calculating 𝑅𝑥
𝑑, the distance in ℝ𝑑 to the kth 

nearest neighbor of point 𝑥. All terms in this equation except for 𝑅𝑥
𝑑 are identical for each 

point in 𝑋, and so can be removed to ease of calculation when creating the filter. Thus, 

each point was assigned a value inversely proportional to how far away the kth nearest 

neighbor was from them, with higher filter values corresponding to points with higher 

local densities; the choice of k = 20 was chosen because it produced a distribution of 

filter values which relatively smoothly varied over a range. There were not large, well-

separated spikes in the histogram of filter values, which would increase the likelihood of 

significant structures in the map fractionating into substructures because some 

overlapping filter regions were unpopulated by chance (see Figure 3). 

These filter functions will be used by the Mapper algorithm to subset the data for 

iterative clustering. The clusters of data in each overlapping range of filter values are 

connected to construct a map of related data. 
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Figure 3 – Histogram of filter values.  

Each bar displays the number of data points which were assigned to each range of filter values when the 

filter was spanned by 250 covers. The central mass of values is well-populated, with only a few empty 

ranges at the extreme high and low ends. 

 

Advantages of TDA over other Cluster Analyses 

Why would someone use TDA to analyze their data, when other cluster analysis 

techniques exist and are easier to implement? Especially considering the Mapper 

algorithm uses another clustering technique (e.g., agglomerative hierarchical clustering) 

to create the connected components. Like other clustering algorithms, Mapper produces a 

two-dimensional representation of high-dimensional data that would otherwise be 

difficult-to-impossible to visualize. Further, it provides relational information between 

different parts of the data, rather than just group memberships for the data points. 

In general, TDA provides several benefits, some of which are also provided by 

the adapted Mapper algorithm. Further, the Mapper algorithm provides some unique 
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benefits above and beyond TDA in general. Carlsson (Carlsson, 2009) argues researchers 

would benefit from using TDA when: 

1. Qualitative information is needed. As an initial step to understanding the data, 

TDA allows the researcher to obtain knowledge about how the data is 

organized on a large scale, and identify gross features which can later be 

further analyzed with other specialized quantitative methods. In the present 

work, I use Mapper to accomplish the task of identifying significant clusters 

of students with related attitudes; after identifying these groups, whether 

significant differences exist between these clusters exist in terms of traditional 

measures can be studied. 

2. Metrics are not theoretically justified. The idea of a generalized distance 

metric, described above, highlights the ability of TDA to handle data in a wide 

range of formats, including mixed qualitative and quantitative data. Because 

the topology of a space is invariant to smooth deformations, studying the data 

in a topological sense protects the researcher from having to choose the 

perfect metric; an intuitive and coherent measure of similarity is sufficient. 

3. Coordinates are not natural. An extension of the above idea, discarding the 

notion that properties of the data must exist in relation to the coordinates in 

which the data is encoded frees the analysis to potentially uncover additional 

emergent behavior. The importance of this aspect of TDA depends on how 

important the coordinates chosen are; if the coordinates are encoding 

theoretically cohesive and comprehensible information, then there is less 

reason to ignore them. Fortunately, while TDA and Mapper can work outside 
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a space of natural coordinates, they are also compatible with them, and so 

information about these coordinates is not necessarily destroyed in the 

construction of a map. 

4. Summaries are more valuable than individual parameter choices. Here is 

where Mapper, in its current incarnation, departs from generalized TDA. 

Because Mapper requires a choice of 𝜖 to create its connected components for 

mapping, there remains a sensitivity to parameter choice in each map. 

Carlsson argues that “it is not well understood that it is much more 

informative to maintain the entire dendrogram of the set…a summary of the 

behavior of clustering under all possible values of the parameter 𝜖 at once,” 

and TDA accomplishes this goal with the study of persistent homologies of 

the space, and encoding this information in barcode diagrams (for example, 

see Figure 4, which shows the persistence of several loops in the data as 

ϵ varies). 
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Figure 4 - Example barcode diagram  

Persistence of loops in an example data set as 𝜖 increases. For some value of 𝜖, the number of bars above 

that point on the x-axis says how many loops (holes in a surface) exist in the cover of the data if each point 

were surrounded by a ball of radius 𝜖/2. For this example, there are a number of short-lived loops for small 

𝜖, along with five persistent loops which suggest real features of the data. Picture taken from (Carlsson, 

2009), with modifications. 

 

On the latter point, Mapper differs from generalized TDA in that it seeks to 

provide a “horizontal” picture while TDA and persistent homology provides a “vertical” 

picture. In other words, TDA collapses the information about the data, with parameter 𝜖, 

into one vertical slice of its persistence/barcode diagram, and then creates the diagram by 

integrating across a range of values for ϵ. However, when using Mapper, the goal is to 

create a picture of the data, not necessarily to detect higher-order features like loops 

(holes in surfaces) or voids (holes in volumes). That information is encoded primarily in 

the zero-order barcode diagram of the sets 𝑓−1(𝑈𝛼), which displays the number of 

connected components, the same information Mapper uses to construct maps. Mapper 

can still reconstruct and detect higher-order features, like loops, but in a more roundabout 

fashion (for example, see Figure 5). However, while Mapper takes the connected 
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components that exist for a particular ϵ and creates a map by filtering the components 

with its filter function to show how those components are related to a filtering parameter, 

TDA using barcode diagrams instead shows how the number of connected components 

varies with ϵ. Both pieces of information are useful, but for visualizing the distribution of 

data, Mapper is preferable.  

Figure 5- Mapper algorithm being applied to example data.  

a) Example data sampled from a noisy circle, plus parameter choices. b) The range of filter values, and 

overlapping covers 𝑈𝛼. The filter function used was “Euclidean distance from the left-most point in the 

data”. c) The data, partitioned into 𝑓−1(𝑈𝛼) for each filter cover. d) The resulting map, which shows the 

general shape of the structure and still conveys the presence of one “loop” in the data’s distribution. Picture 

taken from (Singh et al., 2007) and modified. 

 

a

b
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Challenges of using TDA and Mapper with Quantitative Student Data 

Researcher Choices 

The main benefit of TDA is that it shows you the “shape” of the data. Introducing 

several dimensions along which the data is completely boring makes it harder for the 

resolution of the algorithm to show details that exist in more interesting dimensions. Of 

course, knowing what an interesting dimension looks like is a challenge in and of itself. 

For this study, I used maximal variance as one of the factors in the Weighted Decision 

Matrix. If the spread of scores did not look like a clean and narrow normal distribution, it 

was more likely to produce interesting spread of participants than if everyone fit into a 

neat bell curve. 

Requirements for the Data 

Quantitative Data and Discretization 

When working with any data, the range of values each coordinate can take is 

necessarily finite, thanks to limits of measurement precision. With survey data, this 

problem is often exacerbated, particularly in the case of anchored-scale items which are 

so common. Answering an anchored-scale item on a scale from 0 to 6 gives a total of 

seven discrete possibilities for the response to take. Blending this answer with four other 

questions in a factor analysis increases the number of possibilities to 35 (five total 

questions, seven possibilities on each), but the range of possible values is still discretized. 

The fewer possible responses and the more discrete the dimension, the worse Mapper will 

behave when treating it like a continuous dimension. 
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Limits on Sample Size N 

Traditional quantitative research benefits from having large numbers of data 

points in the sample to work with. Mapper similarly benefits from substantial numbers; 

when N is too small then meaningful maps cannot be created because the underlying 

distribution is too undersampled. But if N is increased too much, the discretization of the 

responses into only certain possibilities creates other issues. Consider the case of a point 

cloud in R2, with each point occupying some location on a lattice in that space. As the 

number of points increases, they begin necessarily occupying identical lattice, skewing 

concepts like local density which rely on assumptions of smooth distributions by creating 

sharp delta function peaks. This distribution would not be a problem if the underlying 

density function were in fact constructed of a handful of delta functions, but in most cases 

the lattice nature of the space is a result of the first issue: discretized response 

possibilities. Thus, there is a limit to increasing N to boost power, if the corresponding 

questions don’t have a high enough resolution. 

Differing Item Scales 

Many times in educational research, survey data will include questions which 

return data on completely different scales. A Likert-type question using an anchored scale 

from 0 to 6, student letter grades, GPAs, and SAT scores all have very different 

distributions even though these responses can all be considered quantitative data8. 

                                                 

8 In the case of student letter grades, each letter traditionally corresponds to a particular percentage of total 

points (e.g., an A is 90%+, or in a system with plus and minus letter grades, and A might be 94%+, and and 

A- might be 90% to 93%. While a Likert scale technically produces ordinal variables, statistical analysis 

usually assumes the intervals between levels are likewise equally spaced. 
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Whichever distance function is chosen needs to properly handle dimensions with 

potentially wildly differing scales and variance. If the data are nicely behaved and 

normally distributed, then the dimensions could be centered and standardized to their 

respective standard deviations, but not all variables of interest are normally distributed.  

Correlation between Questions and the Distance Metric 

Using a Euclidean distance measure, while simple, imposes several assumptions 

about the data. Among these is a Cartesian metric for the data space, with each dimension 

orthogonal to the others. However, attitudinal data are often correlated with other data, 

sometimes to a high degree. Some of this correlation can be collapsed by identifying 

underlying factor structures, as I did with the attitudinal data to identify latent variables. 

However, exploratory (or confirmatory) factor analysis does not guarantee orthogonal 

factors, as principle component analysis would, to maximize interpretability (Jolliffe, 

2002). As factors become more correlated, distance between points along those factors 

should become smaller, but this change is not reflected in the metric. As an example, 

consider the two points (0, 1) and (1,0) in R2. The distance between these points when the 

basis vectors for the space are orthogonal is √2 . As the bases become more collinear and 

the angle between them (measured in the original orthogonal basis) shrinks, this distance 

would decrease, and in the limit of the angle between the bases going to 0 then the true 

distance should likewise approach 0, and the difference between the two points would be 

a result of measurement error that assigned different values to each question.  

As stated on page 79, one benefit to using TDA over traditional cluster analyses is 

that it is robust to choice of metric. However, much of that robustness comes from 

analyzing the full range of values for 𝜖; since Mapper builds a map with a single value, it 
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is more vulnerable to problems created by assuming correlated coordinates/factors are in 

fact orthogonal. The risk can be mitigated by looking at a small range of values to ensure 

stability of the map, but choosing variables which are less correlated makes this process 

easier. 

Results 

I identify a total of eight distinct groups in the data space, plus a large cloud of 

“unorganized” data which was not mapped into a structure due to the relatively large 

distance between its constituent members. The large group with the highest density is 

identified as the “normative group” (NG, see Figure 6, top)9. Seven related groups 

(“near-normative”) were identified by their proximity to the normative group in the map 

and numbered for identification (NnG1-NnG7). This proximity consisted of structural 

links for some of the near-normative groups (NnG1-NnG4), and distance in the factor 

space for others (NnG5-NnG7). On average, the near-normative groups’ center 

(calculated as the centroid of the member data points) were 1.2 units away from the 

center of the normative group, which motivates their characterization as “near-

normative” since this is a relatively small distance in the factor space.  

The “cloud” of points which did not coalesce into any large-scale structure (see 

Figure 6, left side) is collectively named the “disparate group” (DG); the members of this 

group are spread across the space of beliefs, as opposed to being concentrated in one area 

                                                 

9 The small, dark red nodes are clusters of data points with filter values at the extreme high end where not 

every cover was populated, resulting in them being separated from the main structure of the normative 

group in the map. However, these points were tested for differences from the larger normative group using 

two-way permutation tests, and no statistically significant differences in their distributions were found, so 

they were added to the normative group for future analyses. 
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of the belief-space, and are far enough from one another than each student only clustered 

with a small number of other students, often zero. To reduce visual noise in Figure 6, 

only the nodes with at least one link were included in the figure; more data points were 

too far from any other points to form any clusters (consisting of more than just itself) or 

links, and were omitted from the image. 

Figure 6 - Map of the InIce attitudinal factors data with highlighted groups.  

Nodes (red circles) represent data which has been clustered together in one iteration. Size of the node 

corresponds (non-linearly) to the number of data points in that cluster. Color represents density in the 

attitudinal vector space (more red = higher density). Lines between nodes represent links made by the 

Mapper algorithm between clusters with overlapping membership. Eight features were identified in this 

map (circled and named), plus an additional “group” for consideration consisting of all the nodes/data 

points not assigned to another group. 
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Group Attitudinal Differences 

With the groups identified from the Mapper algorithm, differences between the 

groups (NG and NnG1-7) were assessed. Two-way Fisher-Pitman permutation tests 

(Berry, Paul W. Mielke, & Mielke, 2002) were conducted between the near-normative 

and normative group due to the low numbers in some of the near-normative groups, 

which would make traditional t-tests invalid. Results were corrected for multiple 

comparisons with the Holm-Bonferroni method (Abdi, 2010) to account for the fact that 

thirteen factors were compared between seven pairs of distributions, for a total of 91 

statistical tests run in parallel. Mean values of the normative group and statistically 

significant differences for each near-normative group are presented in Table 15. Due to 

the nature of the disparate group as a “group of students with no group”, I chose not to 

characterize it in relation to the normative group in a similar fashion based on mean 

factor scores. 
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Table 15 - Attitudinal differences between groups  

Negative values on the right side of the table signify that near-normative group has a lower mean value of that row’s factor compared to the normative 

group. Results are all significant (*: p< 0.05, **: p<0.01, ***: p<0.001); p-values have been corrected for multiple comparisons. 

   Near-normative Group (difference from NG) 

 NG s.d. 1 2 3 4 5 6 7 

Number of students 562 - 30 8 37 26 41 12 24 

Value 4.41 0.72 -0.73*** -1.03**   -0.61***   

Work Avoid 2.04 1.04       -1.22*** 

Connectedness 4.91 0.66  -1.41*** -0.56***    0.66*** 

Perceptions of Future 5.04 0.64        

Neuroticism 2.19 0.77        

Extraversion 3.00 0.97    -0.68* 0.79***   

Belongingness 4.94 0.66        

Performance Approach 3.97 0.76 -0.68**  -0.78*** -0.60**    

Instrumentality 5.49 0.50        

Grit: Consistency of Effort 3.54 0.77   -0.72***     

Engineering Identity:  

Performance / Competence 
4.64 0.68    -0.50*    

Engineering Identity: Recognition 4.51 0.76  -1.16**  -0.77***  -0.82* -1.08*** 

Physics Identity: Recognition 4.07 0.92     -0.71***   
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Rather than assuming a uniform distribution of scores, and thus characterizing the 

low, medium, and high ranges as 0-2, 2-4, and 4-6 respectively, I adjusted the ranges up 

slightly to account for the fact that the distributions of attitudinal factors tended to be 

centered on the higher end of the scale. If all the scores from these thirteen factors are 

considered as a single distribution, it has a median value of 4 (a full point above the 

center of the scale), and an interquartile range of 3 to 5. Thus, I define the medium scores 

to be between the first and third quartile, low to be below the first quartile, and high to be 

above the third quartile. 

With these definitions, I characterize the normative group as having: 

 low (3 or less) Work Avoidance, Neuroticism, and Extraversion 

 medium (more than 3, less than 5) Value, Connectedness, Belongingness, 

Performance Approach, Grit: Consistency of Effort, Engineering Identity: 

Performance / Competence, Engineering Identity: Recognition, Physics Identity: 

Recognition 

 high (5 or more) Perceptions of Future, Instrumentality 

I found no statistically significant differences in mean values for Belongingness, 

Perceptions of Future, Instrumentality, or Neuroticism between any of the near-normative 

groups and the normative. Other than Neuroticism, these factors were all found to be 

significantly related to engineering student physics identity in Chapter 2. Notably, the 

two factors with the highest mean scores in the normative group, Perceptions of Future 

and Instrumentality, are among those with no significant variation between these groups. 
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Almost all significant differences from the normative group were negative, i.e., 

the near-normative groups had lower means on those factors. The two exceptions were 

NnG7, which had significantly higher average Connectedness, and NnG5, which had 

significantly higher Extraversion. That nearly all the significant differences were negative 

may be an artifact of the clustering algorithm when applied to distributions which are 

skewed. In most cases, this skew was likely the result of ceiling or floor effects from the 

survey question; students could only respond in a limited range of values, so a 

distribution which may have otherwise looked perfectly normal could end up looking 

skewed because results which would have been lower than the minimum (maximum) 

value instead take the minimum (maximum) value. 

Engineering Identity: Recognition was the most common factor to show 

differences from the normative group, differing in four of the seven cases. The 

differences were not all the same size, and in each case, the other factors for which that 

group had significant differences were unique among those four if positive and negative 

differences in Connectedness are considered to be unique changes. The four groups of 

factors which showed significant differences alongside decreased engineering recognition 

beliefs are: 

 no other significant factors; 

 lower Value and Connectedness; 

 lower Extraversion, Performance Approach, and Engineering Identity: 

Performance / Competence beliefs; and 

  lower Work Avoidance and higher Connectedness. 
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Differences in Major Interest between the Groups 

Extending the results from Chapter 2, I investigated whether there were 

significant differences in the interest scores in selected engineering majors between 

groups (e.g., NG, NnG1-7, DG). Due to the small numbers in the near-normative groups, 

the statistical power is insufficient to resolve any but the largest effects, which were not 

present. The disparate group, on the other hand, has sufficient numbers and represents an 

interesting distinction. 

Two-way Fisher-Pitman permutation tests checked for significant differences in 

the mean scores of the normative group and the disparate group on interest in the 

following majors: Mechanical Engineering, Aerospace Engineering, Electrical 

Engineering, Civil Engineering, Chemical Engineering, Biomedical Engineering, 

Computer Engineering, and Information Technology (IT). These majors were chosen 

following the results of Chapter 2; at least two majors were chosen from each tier (groups 

A, B, and C, see page 56). The results of these tests are shown in Table 16. 

Table 16 - Differences in major interest between the normative group and the disparate group 

Differences on selected interests. Differences with superscripts are statistically significant                          

(*: p< 0.05, **: p<0.01, ***: p<0.001); p-values have been corrected for multiple comparisons. 

 Difference from NG 95% CI Effect size 

Aerospace -0.279** (0.110, 0.447) 0.15 

Mechanical -0.5067*** (0.347, 0.665) 0.27 

Electrical -0.1386 (-0.030, 0.308) 0.07 

Civil -0.2274* (0.067, 0.388) 0.12 

Chemical -0.2757* (0.104, 0.447) 0.15 

Biomedical -0.0573 (-0.123, 0.238) 0.03 

Computer -0.0270 (-0.146, 0.200) 0.01 

IT -0.2241* (0.074, 0.375) 0.13 
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I find statistically significant differences in mean interest between the normative 

and disparate groups for Aerospace, Mechanical, Civil, and Chemical Engineering, as 

well as Information Technology. The largest effect size was seen in the difference in 

interests in Mechanical Engineering; the normative group showed a small-to-medium 

difference, while the others showed small differences. The disparate group had lower 

scores for all interests shown in Table 16. 

Classic Demographic Differences Between Groups 

Four successive logistic regressions were run predicting membership in the 

normative group using students’ demographic information as predictors. Students from 

the normative group and the disparate group were used in these regressions; those in the 

near-normative groups were excluded. The normative group contained 519 students, and 

the disparate group contained 2040 students. Power analysis with these sub-samples 

suggests that with 80% power, significant differences in proportions between these 

groups of effect size 0.14 or larger should be detectable, corresponding to a difference of 

at least 1% (for “very small” proportions: less than 3% or more than 97%) to at least 7% 

(for “large” proportions: greater than 35% and less than 65%). 

In the first model, the odds ratio of being in the normative group was predicted 

using student gender identity (Q17). For example, students who responded that they 

identified as “Female” and nothing else had the factor level “Female”, a student who 

responded with “Female” and “Cisgender” would be in the factor level “Female 

Cisgender”. “Male” was chosen as the reference level because it was the most populated 
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level. “Female” was the only statistically significant factor found of 12 non-reference 

levels; these results are summarized in Table 17.  

The second model was similarly built using student race/ethnicity information 

(Q16) and a reference level of “White”. Four factors of a total of 41 unique levels 

(combinations of responses) that appeared in the data were found to be statistically 

significantly different from the reference level: “Asian”, “Black”, “Hispanic”, and 

“White Hispanic”; these results are summarized in Table 18. 

The third model added the factors from the first and second test together a 

combined model. The reference levels for this test were the same as the first two: “Male” 

and “White”. The first factor again had 12 other factor levels, and the second factor had 

41 other factor levels. These results are summarized in Table 19. 

The fourth model was built using recalculated factors for each student by 

considering their responses to Q16 and Q17 combined together. A single-factor 

regression model was then tested using this composite factor. For example, a student who 

answered “Black” to Q16 and “Female” to Q17 would have the “Black Female” factor, 

while a student who answered both “Hispanic” and “White” to Q16 and “Male” to Q17 

would have the “Hispanic White Male” factor. The reference level for this test was 

“White Male”. Seven factor levels were found to be statistically significant of a total of 

87 different combinations of responses to Q16 and Q17 together. Running this regression 

using only the 6 demographics which created significant effects (“Asian”, “Black”, 

“Hispanic”, “White”, “Female”, and “Male”) does not significantly change the result, 

with an average change in the odds ratio of less than 0.002. The largest difference was for 

the reference factor, which increased by 0.034 (+3.4% likelihood). None of these results 
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were statistically significantly different from the model with 87 factor levels, so the 

results of the test which used more authentic student identities are reported. These results 

are summarized in Table 20. 

Table 17 - Odds ratio of membership in normative group predicted by gender.  

All results are significant at (*: p< 0.05, **: p<0.01, ***: p<0.001). Factors not shown are non-significant. 

 

Odds Ratio Sig. N 

Male (reference level)  1984 

Female 0.685 ** 647 

(other factor 

levels) 
- n.s. 65 

 

Table 18 - Odds ratio of membership in normative group predicted by race/ethnicity.  

All results are significant at (*: p< 0.05, **: p<0.01, ***: p<0.001). Factors not shown are non-significant. 

 

Odds Ratio Sig. N 

White (reference level)  1564 

Asian 0.576 ** 328 

Black 0.484 * 99 

Hispanic 0.536 ** 237 

White Hispanic 0.420 ** 95 

(other factor 

levels) 
- n.s. 182 
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Table 19 - Odds ratio of membership in normative group predicted by gender and race/ethnicity. 

Results are significant at (*: p< 0.05, **: p<0.01, ***: p<0.001). Factors not shown are non-significant. 

White Hispanic was included because of its significant presence in previous models. 

 Odds Ratio Sig. N 

Male (reference level)  1984 

Female 0.675 ** 647 

(other gender 

factor levels) 
- n.s. 65 

White (reference level)  1564 

Asian 0.587 ** 328 

Black 0.487 * 99 

Hispanic 0.521 ** 237 

White Hispanic - n.s. 95 

(other 

race/ethnicity 

factor levels) 

- n.s. 182 

 
Table 20 - Odds ratio of membership in normative group predicted by combined gender and 

race/ethnicity.  

Results are significant at (*: p< 0.05, **: p<0.01, ***: p<0.001). Factors not shown are non-significant. 

Black Male and White Hispanic Female were included for completeness because of the results of prior 

models (see Table 17, Table 18, and Table 19) 

 

Odds Ratio Sig. N 

White Male (reference level)  1128 

Asian Female 0.475 * 77 

Asian Male 0.531 *** 242 

Black Female 0.095 * 31 

Black Male - n.s. 67 

Hispanic Female 0.434 * 53 

Hispanic Male 0.481 ** 180 

White Female 0.608 *** 381 

White Hispanic Female - n.s. 18 

White Hispanic Male 0.340 ** 77 

(other factor levels) - n.s. 331 
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All the intercepts for the logistic regressions were significant (p<0.001), and 

represent the odds that the reference population (in these cases, Male-identified, White-

identified, White-identified-and-Male-identified, and White-Male-identified people) 

being a member of the normative group.  

Table 21 - Reference level odds ratios  

These odds ratios signifying odds of being a member of the normative group as a member of the reference 

level factor for each regression. All results significant at p<0.001. 

Regression on… Reference Level OR of Ref. 

Gender identity “Male” 0.278 

Race/ethnicity “White” 0.312 

Gender + race, two factors “White” and “Male” 0.295 

Gender and race as one factor “White Male” 0.351 

 

The odds ratios in the Table 17, Table 18, Table 19, and Table 20 represent the 

odds of that demographic group relative to this reference level. For example, in the 

logistic regression using just gender as a factor, the reference level (“Male”) has a 27.8% 

chance of being in the normative group. “Female” has a 68.5% relative odds, for a total 

of 0.685*27.8% = 19.0% chance of being in the normative group. Across all models, the 

odds ratio of the reference group is approximately similar, around 30%. 

The difference in proportions of White Female students and any level other than 

White Male was not found to be statistically significant; notably, I did not find a 

statistically significant effect at the p<0.05 level for a difference between White Female 

and Black Female, despite the seemingly large difference in their values. However, due to 

the relatively low numbers of female-identified students in the sample, this may be due to 

a lack of statistical power; rather than making comparisons between samples of 2050 and 

519, the analysis is limited to 381 (White Female) and just 31 (Black Female). In this 
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case, the normative group had a single Black Female student, so the addition or 

subtraction of just one other student would result in a 100% change in the proportion. 

There was no statistically significant difference between Male and Female 

students for any of the Race/ethnicity factors other than White within the same 

Race/ethnicity factor. Thus, while hints can be seen of an overall trend towards 

decreasing likelihood of being in the normative group for members of underrepresented 

minorities as aspects of their identity which are underrepresented are intersected with 

each other (and White women having seemingly greater likelihood than women in 

general), the null hypothesis cannot be rejected that the difference in these odds ratios are 

zero with the current data. 

As discussed earlier, one of the limitations of applying traditional statistical 

methods (like regression analyses) by binning students into categories representing the 

intersections of their various identities is that students with uncommon identities end up 

in groups with very low numbers, and thus the test has little power to resolve any 

statistically significant differences that may exist. Thus, while there are only a handful of 

variable combinations which showed up as statistically significant in the analysis, this 

result should not be taken as strong evidence that no such differences exist, but that with 

greater sample sizes such differences would be more readily assessed. 

Including Other Demographic Variables 

I tested models predicting membership in the normative group that included 

variables for disability status (Q15) and sexuality (Q18), coded in a variety of manners. 

Whether disability status was a binary “able-bodied” / “not able-bodied” or the full 
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spectrum of eight different responses to Q15, it was never a significant effect, either on 

its own or in conjunction with other factors in multi-factor models or composite factor 

models. Likewise, sexuality was not found to be a significant effect either on its own or 

in conjunction with other factors in multi-factor models, whether it was coded as a binary 

“straight” / “not-straight”, or a spectrum of five different responses. 

Disability status had 1872 who responded to only Q15e (“I do not identify with a 

disability or impairment”) and 434 students who responded with something else (but not 

including students who did not provide any answer to Q15). The difference in proportions 

was non-significant, with a confidence interval of (-0.031, 0.054), corresponding to effect 

sizes of −0.13 and 0.07, both of which are small.  

Sexuality had 2442 students who responded to only Q18a (“Heterosexual / 

straight”) and 77 students who responded with something else (but not including students 

who did not provide any answer to Q18). The difference in proportions of straight-

identified students in the normative group and the disparate group was non-significant, 

with a confidence interval of (-0.012, 0.020), corresponding to effect sizes of −0.18 and 

0.07, which are again both small. 

Considering this, I conclude that I could not find evidence to reject the null 

hypothesis that there is no difference in the proportion of able-bodied / not able-bodied 

students in the normative group vs the disparate group, and likewise with the proportions 

of straight / not straight students.  

Unlike with the power troubles of analyzing low-N intersections of racial and 

gender identities, however, the effect sizes excluded by the confidence intervals of the 

non-significant statistical tests with disability status and sexuality are small. For example, 
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only if disability status had a very small (real) effect would the test have been unable to 

detect it. The lack of statistical significance suggests (but does not prove) there is no 

difference in proportions for disability status and sexuality, unlike for the uncommon 

racial and gender identities which suggest that more sampling is needed to be able to say 

much. 

Conclusions and Implications 

Variability in the Normative and Near-normative Groups 

I found systematic on the cluster of traits which define the group of normative 

attitudinal factors. Each of these near-normative groups differ from the normative group 

on a handful of distinct factors. That is, the difference between near-normative and the 

normative group is not consistently along the same factor, but rather different 

combinations of factors in each case, suggesting that these near-normative groups 

indicate ways in which a student is most likely to differ from the normative group. 

The variance within the normative group itself is not negligible. From Table 15, it 

can be seen that many of the differences in means between groups are in fact smaller than 

one standard deviation of the normative group along that dimension. However, because 

the map is constructed in a high-dimensional space (thirteen dimensions), it is difficult to 

consider differences along a single dimension, because those differences can occur in 

thirteen different directions simultaneously. 

These groups and their differences were found completely without regard to the 

demographic information of the students. Only their responses to the quantitative 

attitudinal questions were considered in the algorithm. Topological data analysis, 
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therefore, provides an alternative approach to identifying groups of students, driven by 

affective measures like values and beliefs rather than demographic markers like race or 

gender, in a way which would not have been discoverable with traditional analytic 

techniques that could not effectively illuminate the underlying structure of the data. 

Attitudinal and Demographic Diversity 

Students belonging to the demographics which have been traditionally considered 

“normative” are in fact statistically overrepresented in the normative group of attitudes 

found by the algorithm. From this fact, there are two interrelated conclusions to be 

drawn. 

The first is that increasing representation in engineering of traditionally 

underrepresented minorities (URM) is likely to increase the diversity of attitudinal factors 

present in the undergraduate student populations. By diversity, I mean specifically the 

variance in these factors. Though a randomly student is more likely to be part of the 

disparate group than the normative group because the disparate group is larger in 

population, students from URM are between much more likely compared to white male 

students to be in the disparate group (up to 10 times more likely in the case of black 

female students). If the distribution of scores on these attitudinal factors for each 

demographic group persists for subsequent samples, then recruiting more engineering 

majors from URM would likely increase the number of students who hold “non-

normative” attitudes, beliefs, and values. 

The second, related conclusion is that increasing the variability in attitudes held 

by the students by changing recruiting strategies (say, by expanding the discourse on 
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what sorts of careers or career interests one could address with an engineering degree) is 

likely to increase the demographic diversity of engineering students. Though the majority 

of students in the normative group exclusively identified as white and male (56%), this 

was not true of the disparate group, which had only 41% of students identifying 

exclusively as white and male10. Thus, a randomly chosen student with beliefs that would 

place them in the disparate group is more likely to not identify a white male. Appealing 

to students on the basis of attitudes and values that are not traditionally held or strongly 

espoused in engineering lore therefore provides an alternate route to increasing 

representation of URM in engineering: change the messaging for pre-college students and 

within engineering programs and classes to attract and retain a broader space of 

attitudinal factors, including departmental climate. 

A limitation of all these conclusions regarding student demographics is that all the 

analyses are concerned with likelihoods. While the normative group is composed of 

mostly white men, it is a simple majority and not substantially more. Students identifying 

as white and male are statistically overrepresented in the normative group, but other 

groups are still present. The reverse is true of the disparate group: though URM students 

are statistically more likely to be in the disparate group, white male students are still the 

plurality, due to the very fact that URM students are underrepresented so in the same (and 

in STEM overall). 

                                                 

10 Difference in proportions between normative group and disparate group is statistically significant 

(p<0.001). The proportion of white male students in the disparate group, taken as a sample from a 

distribution instead of a population statistic, has a 95% CI of [38.8%, 43.1%], and is statistically 

significantly different from 50% (p<0.001). 
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Therefore, despite showing statistical differences in likelihoods of appearing in 

the group structures, one of the major takeaways from this analysis is that the group 

structure found by TDA and Mapper is not a strong reflection of race or gender. An 

alternative method—attempting to partition the sample according to these demographics 

and calling the group of white-identified, male-identified students “normative” and 

everyone else “non-normative”—would grossly misrepresent the reality of the attitudinal 

groupings. Instead, by giving priority to attitudes in the analysis, a different division must 

be made, and while this division is unequal for different racial/ethnic groups and different 

genders, it is not absolute. Therefore, in applying the findings of this work, educators 

would be remiss to assume that a student holds normative or non-normative beliefs based 

on their demographic identifiers.  

Limitations of this Study 

As mentioned in the background on page 63, quantitative analytic techniques (like 

the logistic regressions used to assess differences in membership between the normative 

and disparate groups) are difficult to combine with an intersectional consideration of 

student identities. This difficulty was reflected in the results of the logistic regressions: 

the groups which showed statistically significant differences were almost exclusively 

those groups that would be considered in a standard analysis that combined race and 

gender, because other, less populated responses did not have the statistical power to 

produce a significant result if a real effect existed. The one atypical combination, “White 

Hispanic” (and the related “White Hispanic Male” and “White Hispanic Female”) had 
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higher representation than might have been found in another study due to the presence of 

FIU (a Hispanic-serving institution) in the sample and collaboration.  

Unfortunately, the relatively low numbers of female-identified students in the 

sample (reflective of the overall underrepresentation of women in engineering) creates 

challenges for digging deeper into several of the results found. Despite the seemingly 

large difference in odds ratios between different groups of women in the fourth model 

(see Table 20) the confidence intervals for these estimates were too wide to be able to 

conclude any sort of statistically significant difference between groups of different 

races/ethnicities as a result of the low numbers. 

Many of the same limitations discussed in the previous chapter (see page 60) 

apply here as well. The schools were not randomly chosen, and the population of those 

schools is not fully representative of the undergraduate engineering population of the 

country. Because this study was mapping the distribution of attitudes of students from 

these schools, if the culture of these schools is significantly different from the “average” 

engineering culture (whatever such a concept of “average” culture entails), that fact may 

be reflected in the map, creating a unique topology that has reduced generalizability to 

other populations. 

Directions for Future Work 

As described on page 82, Mapper differs from traditional TDA using persistent 

homology in the way it represents the data “horizontally” instead of “vertically”. Future 

work which better marries the two ideologies could bring the best of both approaches; a 

three-dimensional map which shows both the maps from Mapper for each level of ϵ 
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while also linking maps of different parameters together as in a barcode diagram. Plans 

for future research include implementing such a design, but the scope of that project is 

beyond the current work. In the meantime, a careful researcher can protect themselves 

from choosing a value of ϵ which gives them unstable results (i.e., results which would 

drastically change under small perturbations to the parameter) by creating several maps 

across a small span of values and confirming that the overall trends remain consistent 

between maps. 

One potential avenue for future investigation of this data would be to further 

reduce the dimensionality of the data space using factor analysis. The data space has 

already been reduced by way of factor analysis once, but the fact that the near-normative 

groups are differing in these distinct fashions suggests that there may be additional 

structures within the data, i.e., meta-factors built out of factors, which would encode the 

types of deviation from the normative group in the directions of these near-normative 

groups. These meta-factors would provide additional evidence in support of using TDA 

as a technique for analyzing quantitative student data by validating the group structure 

hinted at by the topological map. Such an analysis would nevertheless rely on a first-pass 

analysis with TDA to establish the subset(s) of the data worth investigating for meta-

structure, as the meta-factors which exist within the data can in theory change entirely 

from one section of data space to another, according to the underlying distributions and 

their intersections. 
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CHAPTER IV: TIME-DEPENDENT CHARACTERIZATION OF PHYSICS 

IDENTITY 

Introduction 

The original motivation for this dissertation (see Chapter 1) was to improve 

recruitment and retention of STEM majors, with a focus on engineering students as they 

make up a sizable portion of both the enrollment in introductory physics (and so are a 

relevant population to study in physics education research) and overall numbers of STEM 

graduates (U.S. Department of Labor, 2015). One avenue for improvement was to take 

advantage of the benefits prior work has seen associated with strong physics identities, 

including increased engagement, persistence, and eventual choice of career in a STEM 

field (Cass et al., 2011; Godwin et al., 2016; Hazari et al., 2010). However, the same 

benefits of persistence, increased interest, and engagement in STEM as a whole can be 

achieved without having specifically a physics identity. 

In Chapter 2, I discussed a possible explanation for the negative associations 

between Connectedness and Instrumentality with a student’s physics identity; namely, a 

student with high scores on those factors is future-minded, and so is effectively months or 

years ahead in their program in terms of how they associate engineering with other fields 

like physics. Underpinning this hypothesis is the idea that engineering students see math 

and physics as less relevant over time as their college careers progress (Zavala & 

Dominguez, 2016; Zavala, Dominguez, Millan, & Gonzalez, 2015). Thus, I argued, a 

student who has a stronger connection to their future may be effectively reaching this 

point where they less-strongly associate physics and engineering earlier than their peers.  
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Prior work in Future Time Perspective theory described students with highly 

detailed, positive pictures of their futures, and plans for how to get there(Kirn et al., 

2014); these students had clear ideas of the future person they wished to be, and the steps 

required to get there, which provided them with the motivation to pursue their goals to 

completion. Thus, if the negative association of high Connectedness and Instrumentality 

on a student’s physics identity found in Chapter 2 is reflective of an alternative identity 

which achieves the same positive outcomes, then the fact that the association is negative 

is not necessarily indicative of a problem. However, understanding possible links 

between depressed physics identity and a future-oriented framework such as this is 

needed, and is the focus of this chapter.  

I investigate this claim by analyzing interviews with select engineering students 

from FIU. Prior work within the identity literature has suggested that it is fairly stable 

over short periods of time (Cribbs et al., 2013; Potvin & Hazari, 2013). Thus, rather than 

quantitatively measuring the physics identity construct at follow-up interviews and doing 

an analysis of pre-to-post differences, I considered the relative salience of physics to the 

students’ experiences in engineering, changes in their physics identity over time, and the 

evolution of what constitutes recognition as a physics person as the students progress. I 

focus particularly on physics recognition beliefs since prior work has shown that 

recognition beliefs are the most important sub-construct of identity and strongest 

predictor of self-recognition as a physics or math person (Godwin et al., 2016). 

For this study, I investigate the following research questions: 

1. How do FIU engineering students’ perceived connections between engineering and 

physics change as they become more experienced in engineering? 
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2. How does the nature of these students’ physics recognition beliefs change over a 

period of one year following their introductory engineering courses? 

Investigating these answers will help broaden the understanding of physics 

identity as it pertains to engineering majors, a major population in the physical science. 

The current model of engineering identity shows a strong association between students’ 

engineering identity and their physics identity, but this relationship may be more 

complicated than originally proposed by Godwin et al. (2016). 

Methodology 

This study was framed in a mixed-methods sequential, explanatory design. In the 

preliminary phase, a quantitative mapping of the participants and their peers was drawn 

from student survey data (see Chapter 3) followed by a set of phenomenological case 

studies using thematic analysis to develop an understanding of how students’ beliefs 

evolve over time. As a mixed-methods analysis, it draws on both qualitative analyses 

(specifically, thematic analysis) and quantitative analyses for its conclusions. The 

quantitative aspect and its findings were primarily discussed in Chapters 2 and 3.  

Case studies are useful when a holistic, in-depth investigation of the data is 

needed, allowing the researcher to closely examine the data in a specific context (Zainal, 

2007). This design was chosen because I wanted to be able to unpack and focus on each 

student’s overall data, including both their interviews and survey data. The units of study 

in the case study are the students selected for interviews, with each case being a single 

student. 
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Thematic interview analysis involves analyzing interview transcripts for patterns 

(themes) in the data (Boyatzis, 1998; Fereday & Muir-Cochrane, 2006). The interview 

transcript is marked for units of meaning, called codes, which are then grouped into 

broader categories which are related to the research questions driving the analysis. 

As a phenomenological analysis, the phenomenon under study is the evolution of 

the students’ identities and their relationships with physics. I focus on the perceptions and 

experiences of the students as objects of study, which is complimented by the use of 

thematic analysis as an interpretive technique. I chose this approach because it allows me 

to effectively characterize students’ relationships with physics in sufficient depth. 

To address validity threats to the conclusions drawn from this analysis, I used two 

main validity measures. First, I triangulated multiple data sources (survey data, 

interviews) to confirm emergent findings. Second, I implemented peer review of the data 

analysis, in which I met with other physics education researchers to review evidence for 

my claims (Merriam, 2002).  

This study was conducted as part of a larger research project, which involved 

selecting additional students for interviews on a broader set of topics. I will be analyzing 

a slice of the overall interview data as it pertains to physics, physics identity, and 

students’ recognition beliefs, and focus specifically on how these constructs change in 

importance and characterization over time for the students. 

Choice of Participants  

Following the construction of the map of student beliefs and the identification of a 

large “normative group” (see Chapter 3 for more details), select students were solicited to 
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participate in semi-structured interviews to further investigate those beliefs. Analysis of 

the interview content is qualitative in nature, but participant selection was heavily 

informed and directed by previous quantitative analyses. Participants from the disparate, 

near-normative, and normative groups were solicited for follow-up interviews. Only 

students who provided an email address to Q23 of the survey could be contacted due to 

the anonymity of the survey (students could voluntarily provide an email if they were 

willing to participate further in the study). Students were asked to participate in follow-up 

interviews, and offered a gift card for $25 as compensation for their time after each 

interview. At the end of each interview, the student was requested to participate in further 

follow-up interviews; all students in the curret analysis participated in both the initial and 

follow-up interviews. 

After finding the mean attitudes of the normative group (see Table 15 in Chapter 

3), students in the disparate group were ranked according to their distance11 from the 

centroid of the normative group’s beliefs. Disparate group members who were distant 

from the normative group were chosen to maximize the variability in the attitudes among 

interview participants, providing broad coverage of the map with a limited number of 

participants. The furthest members of the disparate group were solicited in the first wave 

of recruitment emails. Similarly, the most central members of the normative group were 

solicited first, and more distant members contacted after at least a week’s delay. The 

choice to solicit a particular student was made on the basis of their attitudinal scores, 

which placed them in either the normative or the disparate group, and their distance from 

                                                 

11 Using a Euclidean metric in ℝ𝑛. 
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the center of the normative group, and not on the basis of any demographic variables 

other than which school they attended, in an attempt to spread the interviews more or less 

evenly between participating universities. This purposeful sampling as part of the overall 

(four-institution) research project ensured adequate representation of each school in the 

qualitative data, in case a school-dependent effect was present. Because the number of 

students in the entire data set was unequally distributed between the schools (but in 

proportion to the relative population sizes at those schools), without such purposeful 

sampling it would be more likely for one of the smaller populations (FIU or UNR) to be 

underrepresented or missing simply by chance. However, the analysis in this chapter 

focuses only on students from FIU who participated in the interviews. 

One reason for the specific focus on students from FIU is that the university is a 

Hispanic-serving Institution12 with a student population representing heritages across the 

Caribbean and Latin and South America. Previous work by Zavala et al. (Zavala & 

Dominguez, 2016; Zavala et al., 2015) showed modest decreases in the reported 

relevance of math and physics content to engineering through a study of students in a 

Chilean and a Mexican university. Of the schools participating in the research 

collaboration, the student body of FIU is most similar (in demographics) to those studied 

by Zavala et al., thereby maximizing the relevance and transferability of those findings to 

the current work. 

                                                 

12 As of Fall 2014, 62.6% of students at FIU identified as Hispanic (Office of Governmental Relations, 

2014) 
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The original InIce survey was deployed between September 2nd and September 

14th, 2015, during the first two weeks of the semester.  Interview solicitation began in 

April of 2016., and the first interviews were completed between May 20th and June 8th, 

2016, at the end of the spring semester following the deployment of the InIce survey 

(approximately 9 months after survey data collection). The second, follow-up interviews 

with the same students were completed between November 4th and November 15th, 2016, 

in the latter half of the following fall semester, approximately one year after the initial 

survey, and approximately six months after the first interview. The interview protocol for 

the interviews can be found in the Appendix on page 161. 

About the Participants 

In this section, I begin by describing demographic similarities between the 

surveyed students. I then summarize their differences on the quantitative affective 

measures and finish with a brief description of each student individually, including their 

scores on the physics identity sub-constructs from the InIce survey. 

A total of five participants from FIU were interviewed. All five were straight-

identified and female-identified students. All but one of the students were born outside 

the United States in a Caribbean or South American country. Every students’ 

parents/guardians were born outside the United States in a Caribbean or South American 

Country. All students listed two parents or guardians; one indicated two female 

parents/guardians, while the others each had one male and one female parent/guardian. 

Most parents/guardians had some college education at an associate’s or bachelor’s level. 

Three students reported having no disability, one had a disability not listed (PTSD), and 
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the last declined to answer. All but one of the students participating in the interviews 

were not first-year students, including two who had attended other colleges/universities 

prior to attending FIU. 

In addition to being “far” from the center of the normative group, with an average 

distance of 4.37 units, disparate group members were also pairwise distant from each 

other, with an average pairwise distance of 6.04 units (min 4.05, max 8.93). See Table 22 

for details. For scale, each of the thirteen dimensions used to create the map spanned a 

range from 0 to 6, and the maximum possible distance between two points was 21.63. 

The mean distance between points in the total sample was 5.76. Therefore, in terms of 

their affective scores, students were as different from each other as they were from the 

normative group, which was a consequence of the intentional selection of distant students 

to cover a wide range of beliefs. 

Table 22 - Pairwise distances between interview participants and the normative group  

Distances in the space of attitudinal factors. The first four participants are all members of the disparate 

group, while the fifth, Pilar, is a member of the normative group. 

 

Allison Betty Cara Elisa 

Normative 

Group 

Allison     4.38 

Betty 5.61    3.70 

Cara 5.99 5.06   3.70 

Elisa 8.93 7.46 7.18  5.70 

Pilar 6.18 4.43 4.05 5.47 2.60 
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Allison13 was a second-year14 mechanical engineer, who was born in Peru, and 

who initially came to FIU as an electrical engineer but switched majors on the first day of 

orientation. She had high scores on all three physics identity sub-constructs. 

Betty was a second-year biomedical engineer who was born in the United States. 

She had a moderately high score on the physics interest sub-construct, but low values for 

both physics performance/competence and recognition beliefs. 

Cara was a second-year civil engineer who was born in the Bahamas. In the 

survey, she responded that she was in her fourth year of college, though later interviews 

elaborated that she was a sophomore at FIU and had previous experience in another 

school. She had low sub-scores on physics performance/competence beliefs and interest, 

and a moderate score on physics recognition beliefs. 

Elisa was a first-year construction management engineer who was born in Haiti. 

In the survey, she listed her major as mechanical engineering. She had high sub-scores 

for physics interest and performance/competence beliefs, and a low sub-score for physics 

recognition beliefs. 

Pilar was a third-year biomedical engineer who was born in Columbia, and a 

transfer student from another college. At the time of the first interview, she was a mature 

student who had returned to college, and was 33 years old. She had a moderately high 

                                                 

13 All names are pseudonyms. Each student was given the option to choose their own pseudonym for use in 

this project. 

 

14 At the time of the InIce survey, in September 2015.  
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sub-score for her physics interest, and moderate to moderately-low sub-scores for both 

physics performance/competence and recognition beliefs.  

See Table 23 and Table 24 for a summary of these student characteristics. 

Table 23 -  Summary of selected student demographic information of interview participants  

All five students had very similar demographic traits and backgrounds. Some of the salient differences are 

below. a: Cara listed her year as 4th in the survey, but said in her interviews that she was a sophomore in her 

second year. 

 Year Major Heritage Born in the US? 

Allison 2nd  Mechanical Peruvian No 

Betty 2nd  Biomedical Venezuelan Yes 

Cara 2nd, a Civil Bahamian No 

Elisa 1st  Construction Haitian No 

Pilar 3rd  Biomedical Columbian No 

 

Table 24 – Interview participant physics identity sub-construct scores 

Scores at the time of the initial survey. Numbers (provided in parentheses) are on a scale from 0 to 6. 

 Performance Competence Recognition Interest 

Allison High (5.6) High (6.0) High (6.0) 

Betty Low (2.8) Low (2.8) Moderately-high (4.3) 

Cara Low (2.4) Moderate (3.4) Low (2.0) 

Elisa High (5.4) Low (2.8) High (5.0) 

Pilar Moderately-low (3.0) Moderate (3.2) Moderately-high (4.7) 

 

Choice of Questions in Interview Protocol 

The interview protocols were designed for semi-structured interviews averaging 

approximately 30-45 minutes. A semi-structured interview format was chosen to allow 

room for elaboration and tangents by the student as interesting topics came up, thereby 

allowing them to fully express whichever thoughts, feelings, and experiences they found 

relevant. To reduce participant fatigue during interviews, each participant was only asked 

a subset of the items on the overall protocol. Every student was asked to tell a story about 

how they got into engineering, a block of questions about how they see engineering and 

their engineering identity, and questions about belongingness. The other affective 
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constructs used in the creation of the map had a block of questions associated each of 

with them, and students were asked questions from blocks on which they showed 

substantial differences from the normative group, as well as a block in which they were 

similar to the normative group, as a potential control. Table 25 outlines the blocks of 

questions each student was asked during the first interview; details for these questions 

and the entire interview protocol can be found in the Appendix. Additional questions for 

the second interview were personalized for each participant based on the content of their 

first interviews, though the same semi-structured protocol remained. 

Table 25 - Interview protocol blocks asked to each participant in the semi-structured interview. 

All students Story, Engineering Identity, Belongingness 

Allison Work Avoidance, Neuroticism, Physics Identity: Recognition 

Betty Physics Identity: Recognition, Extraversion, Grit: Consistency of 

Interest 

Cara Value, Extraversion, Physics Identity: Recognition 

Elisa Work Avoidance, Neuroticism, Performance Approach, Grit: 

Consistency of Interest, Physics Identity: Recognition 

Pilar Instrumentality, Perceptions of Future, Connectedness, Physics 

Identity: Recognition 

Results and Analysis 

In this section, I explore the themes which emerged from analyzing the interview 

transcripts regarding physics, physics identity, and physics recognition beliefs in 

particular. I found evidence for two themes; First, students tended to see physics as less 

important and less integral to doing engineering by the second interview, compared to the 

first. While their literal view on the importance of physics may not have changed, the 

salience of physics in engineering contexts to them was seemingly decreased. Second, the 

nature of what constituted physics recognition evolved over time, and tended away from 

traditionally considered recognition events. 
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Salience of Physics Identity to Students’ Engineering Experience 

In the first interview, the students were asked “what does an engineer do?” and 

“what skills are important for an engineer?” as broad, open-ended questions. Student self-

generated responses focused on the problem-solving aspect of engineering primarily, as 

well as a need for critical thinking and analytic skills, along with some creativity and 

interpersonal skills. Initial interviews from students with higher physics recognition 

beliefs (e.g., Allison, Cara, and Pilar) included a spontaneous mention of physics as an 

additional important skill for an engineer to have, but by the second interview, explicit 

mentions of physics as a required skill dropped off, even though the other skills remained 

prominent 

Allison, who had the highest physics identity scores on the initial survey, 

explicitly called out math and physics as being principles that engineers use in their work; 

when asked what engineers do, she described it as applying, math and physics principles 

to the daily world to solve needs (emphasis added): 

Q So what’s an engineer?  What does an engineer do? 

A Oh, they fix things […] they apply math and physics principles into the 

daily world so they apply science into daily world needs. 

Q Right.  So what skills are important for an engineer? 

A 3-D visualization, critical thinking, problem solving, creativity and team 

work.   

 

While she doesn’t call out physics as an important skills for an engineer, from her 

description of what engineers do it is clear that she sees an important link between the 

physics and engineering. In the second interview, she describes a similar relationship 

(emphasis added): 
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Q …Tell me your feelings, what is engineering? 

A It’s the applied times, right, the applied version of like physics and 

math or whatever, to create and innovate new, well, you’ve seen machines but 

now it’s  

just basically anything that can be incorporated into the field what they call the  

soft sciences like the, both soft and hard sciences. 

 

By the start of her third year of college, Allison sees engineering is a distinct form 

of physics and math. Rather than applying principles from these fields, engineering is 

itself an applied version of those disciplines.  

Betty, a second-year biomedical engineer with low performance/competence and 

recognition beliefs sub-scores, but a moderately high physics interest score, heavily 

emphasized the need for analytical skills for an engineer. She was unique among 

participants in that she noted that different engineers may require different skills. She 

identified physics as an essential skill for some engineers, but not for her own major 

(emphasis added). 

B The skills that are important, analytical skills, being able to see trends, at 

least for me it would be being able to see trends and data.  We’re very heavy on 

statistics. For a different engineer I’d say I guess mechanical or electrical, it 

would be more, I guess, I’m thinking more abstract.  I’m thinking of my friends 

in electrical engineering.  They have to be very strong on physics, too, 

extremely strong because that is the basis of everything that they will ever do.  

And so I’d say being able to pick up on.  And one of the things that I remember 

from first getting used to learning physics was how difficult it was to pick up on 

certain things a problem was giving to you.  So you have to pick up on patterns, 

you have to be able to analyze where can I get from here to there. 

 

In the second interview, this distinction is no longer present, and she makes no 

mention of physics at all. Instead, her description remains focused on the analytical skills 

mentioned in her first interview, and added a mention of interpersonal or managerial 

skills required for navigating teamwork: 
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Q Like so what are the, so what are the skills that are important to do 

engineering? 

A Analyzation of a problem.  I mentioned problem solving before.  I guess 

that’s really broad so.  I guess under analyzation, I don’t know if this is, I don’t 

know how to concise it, like concisely say it, but being able to determine different  

methods of how to, how to get to a solution.  Even if you’re not technically right 

or wrong, just being able to identify them.  I’m sorry, what was the question 

again?  Like what do they do? 

Q You’re doing great.  I mean, I’m just interested in your thoughts on like 

what does it mean to be an engineer, what do engineers do and what skills are 

necessary? 

A What skills you need, um, what kind of skills do they need, I guess, to get 

to the method, you really need to have management skills because if I didn’t, if 

my team didn’t have management skills I don’t know where we’d be.  Luckily we  

have someone that manages us, well, me and another person manage us very well. 

 

Cara, a civil engineer with low physics performance/competence beliefs and 

interest sub-scores and a higher recognition beliefs sub-score, saw engineering as a way 

to blend math and physics together. Initially majoring in math, she was interested in 

doing “something in physics” when she came to FIU15, and saw engineering as an avenue 

to accomplish this. Interestingly, physics alone was not seen by Cara as a way of doing 

math and physics together (emphasis added):  

Q What about physics?  You said you wanted to do something in physics. 

Did you think about physics? 

C I did, but I also like math and physics together and I guess engineering 

uses both of them but I haven’t got a class that’s just like physics by itself. 

 

Her conception of engineering requiring math and physics was reiterated when 

asked what skills are important for engineering (emphasis added): 

                                                 

15 Despite the low score on the physics interest sub-construct, which was mainly pulled down by a very low 

response on the item “I enjoy learning physics.” She describes later in the interviews a very negative 

experience learning physics in the Bahamas, and which was improved dramatically at FIU. 
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Q …You sort of said a little bit of this, but what other skills do you think are 

important for engineering? 

C You have to have math skills, be good on the computer, be good with 

dynamics.  Physics of course. 

 

By the second interview, Cara still saw physics skills as required to be an 

engineer, repeating that engineers need math and physics skills, and further broadened 

her list somewhat to include personal skills (emphasis added): 

Q …What sort of like, what are sort of the characteristics of the things that 

you need to have to be an engineer? 

C I think math skills.  Definitely physics.  Mmm, a little bit of chemistry, 

maybe.  Personal skills. 

Q What kind of personal skills? 

C Like to work with others because you know, any engineering project you 

have to work with others.  Maybe managerial skills. 

 

Elisa, a construction management engineer with low physics recognition beliefs 

but high physics performance/competence beliefs and interest sub-scores, also echoed the 

sentiment shared by others that “engineers solve problems”. When asked about which 

skills are important for engineering, she responded with “analytical, problem solving,” 

with no specific mention of physics or math skills as some of the other participants had. 

Her first interview stands out in this regard as being the only person to not mention any 

importance of physics skill to do engineering. 

The last participant, Pilar, was a nontraditional student majoring in biomedical 

engineering. She had moderate scores for all three physics identity sub-constructs, with 

slightly lower performance/competence beliefs, and higher interest. In her first interview, 

she describes a broad range of important skills to be an engineer, including “more than a 

decent grasp of physics…a good grasp of physics”. She says (emphasis added): 
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Q So what skills are important to do engineering? 

P You have to be very analytical.  Very analytical.  Way patient.  Very well 

versed in math or at least well versed, well rounded.  Have a decent grasp of 

physics, more than a decent grasp of physics.  I think you have to have a 

good grasp of physics.  Chemistry is not bad especially if you’re dealing with 

anything with materials.  Being able to maybe look, because there’s also creative 

aspect to engineering, especially if you end up in research and development or 

something like that.  You have to be able to maybe tackle a problem from a 

different angle, see it from a different perspective.  So having a creative edge also 

helps.  And just a lot of patience. 

 

 By the second interview, Pilar responded differently when asked what skills are 

required to do engineering, saying: 

P Logical thinking definitely.  You do need the math and you do need the 

technical know-how, but if you, it’s more of a way of thinking than it is the 

technical and the programming and all that.  I mean, that helps obviously but 

those are tools but it’s more of a way of thinking that is what engineering is. 

 

 The list of necessary skills has sharpened from the broad list provided the first 

time. Notable differences include no mention of physics (whereas previously “more than 

a decent grasp of physics” was required), as well as chemistry and patience; instead she 

focuses on engineering being a combination of math, technical know-how, and a certain 

way of thinking which uses those tools. 

In summary, students were less likely to spontaneously connect physics to 

engineering when asked about relevant skills for engineering by the second interview, 

compared to the first. I interpret this as evidence that physics is seen as less salient to 

engineering over time, and more of a distinct and separate field of study. 

Evolution of Physics Recognition Beliefs 

Students were also asked to recall an instance in which they felt recognized as a 

physics person. The meaning of this question was left to the interpretation of the student, 
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consistent with past research in this domain (e.g., (Carlone & Johnson, 2007)). They were 

similarly asked whether they felt like a physics person, whether there was a time they 

were recognized as an engineering person, and whether or not they see themselves as an 

engineer and why. 

Allison, who had the highest physics identity scores on the initial survey, said in 

the first interview that she felt recognized as a physics person because “Everyone always 

comes to me for help questions, concerns.” In other words, she felt recognized by others 

because they relied on her competence in physics. She elaborated and described how she 

recognized herself (an important feature of overall physics identity) because of her 

mastery and competence in the subject, as opposed to just performance: 

A  …I also feel like I understand stuff vs. plugging and chugging. 

Q I see.  Explain to me the difference. 

A So there’s a difference between when you have a formula and you use it 

than to recognize why you’re using that formula.  And especially, for example, in  

dynamics which is one of the biggest ones – you can do plug and chug and you’ll  

get through the class if you’re lucky, but if you choose the wrong plug and chug  

you won’t get the right answer because you don’t have the physical concept of  

what’s happening in the system. 

 

Her feelings of recognition as a physics person are derived from her performance 

and competence beliefs in physics, and she feels recognized both by others and herself.  

In the second interview, her conception of engineering as applied physics spilled 

over into how she conceived physics recognition. When asked about a time she felt 

recognized as a physics person, she interprets the question more broadly to include 

engineering, explicitly saying “they’re not physics, they’re applied physics”; in her mind, 

even though she is doing “physics-related things” it is very distinct to her. 
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Q Do you feel recognized as a physics person? 

A Not any more because I haven’t taken physics, at least purely, in such a 

long time. 

[….] 

Q Have you had any sort of time in, since we talked last, where you have felt  

recognized as a physics person? 

A Yeah, yeah. [.…] I mean like physics is engineering but yeah.  Like just 

other people needing my help on physics-related things but they’re not physics, 

they’re applied physics. 

 

Because she had not taken “pure” physics in a while (i.e., a physics class, as 

opposed to physics in the context of an engineering class), she no longer felt recognized 

as a physics person, even though she was approached for help with physics-related 

things, as she was at the time of the first interview. One possible explanation for why this 

difference has appeared in her mind is suggested later in the interview, when she 

describes the experiences of a friend of hers that she met during the summer research 

experience she completed at another university in the time between the first and second 

interview. The friend, a physics major, “was really upset she was a physics major” and 

sought to switch to engineering, but was denied the ability to transfer her classes because 

the physics and engineering classes were incompatible. 

A Because she was already, she was already in junior year so, and like she 

asked her department if she could switch and the department said you could but 

your classes don’t count because like the way that physics approach the classes 

that we do are just completely, apparently completely different. 

 

This difference in approaches to related subjects between engineering and physics 

may help instantiate distinctions between the fields as two separate such that participating 

in one is exclusionary from the other. 

Betty, a biomedical engineer, started with low scores on her physics 

performance/competence and recognition beliefs sub-constructs, but a moderately high 
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score on physics interest. When asked in the first interview about times that she felt 

recognized as a physics person, she likewise focused on when her 

performance/competence was recognized by way of high grades: 

Q But you didn’t have the physics experience in high school so I’m 

interested sort of in what your feeling is about the recognition you get … 

B … Um, not really in Physics 1 but in Physics 2 I remember getting like 

one of the best test scores like once or twice so that was definitely, I felt pretty 

recognized like at that point. 

 

However, by the second interview, she no longer felt recognized as a physics 

person at all. Her experiences with her boyfriend, a physics major, helped shape her ideas 

of what “a physics person” is like, and thereby let her define herself in opposition to it 

because of the differences. She said: 

Q So, and that’s sort of the background now so since that time, since we 

talked the  

last time, do you, do you feel recognized as a physics kind of person? 

B As a physics kind of person? No. I don’t think so. Maybe like my means 

of comparison is kind of weird because I kind of like my boyfriend studies 

physics and not even here, in California, so he’ll talk about quantum mechanics so 

he’ll go all Googly-eyed over quantum mechanics or just some like, some really 

fluid mechanics or just something that I’ve learned about but I don’t care about 

the intrinsic, like the specifics of it, like I’ve learned about it and I’ll do the 

equation and yes like I will, like I don’t want to derive anything, that’s not, I’ll do 

the problem […] I’ll think about it, I’ll be like that’s how it works.  I’ll be 

practical but I don’t want to get all theoretical and so oh, my God, this is so – no 

[….] I don’t consider myself a physics person. 

 

 With a clear picture of what a physics person looks like as a result of her personal 

interactions with a physics major, she now excluded herself from the identity, explicitly 

denying self-recognition, because of the differences she saw between the disciplines. She 

initially laid a tentative claim to an identity as a physics person, evidenced by her 

somewhat low scores on the sub-constructs, and recognition beliefs that were contingent 
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on performance in a physics class. This tentative identity was abandoned when brought 

into contact with what she perceived to be a quintessential example of a physics person. 

 Cara similarly described in the first interview feeling recognized as a physics 

person because of her grades. 

Q Do you feel that you get recognized as a physics kind of person? 

C Yeah.  I mean I get good grades in physics so yes. 

Q Who has recognized you as a physics person? 

C My professor. 

Q And what did that look like?  How did you feel recognized in that context? 

C Um, well, on one of the exams like I did exceptionally well and he just  

congratulated me so that’s where I felt recognized, yeah. 

 

Like Allison, in the second interview she interprets a question explicitly about 

being recognized as a physics person as also being a question about engineering. For her, 

recognition as a physics person was simultaneously a validation that engineering was “for 

[her]” and her physics competence. 

Q …tell me about a time or times that you have sort of felt recognized as a 

physics kind of person. 

C I think when I first, when I first was in the Bahamas when I took the 

physics class I really, I didn’t like, it was horrible.  I didn’t really know if I’m cut 

out for this.  But then when I re-took it in FIU and I like understood and I got 

good grades then I definitely felt like engineering was for me, I could actually do 

physics. 

 

 Cara once again gained recognition as a result of her performance and 

competence in the subject; performing well leads to feelings of recognition, even without 

an external person to explicitly recognize the achievement. However, this successful 

physics performance was seen as confirmation of belongingness in engineering. 

 Elisa, a construction management engineer with low physics recognition beliefs 

but high physics performance/competence beliefs and interest sub-scores, consistently 

said she did not feel recognized as a physics person. In the first interview, she qualified 
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her denial by saying “I just started a couple, like two, three weeks ago,” suggesting that 

she thought with more time she would be recognized, but without previous experience in 

a physics class (she had no high school physics experiences) she would not feel 

recognized. In the second interview, when asked about whether there were times where 

she felt recognized as a physics person, or whether she sees herself as a physics person, 

she repeated her previous statements. The one physics class she took between interviews 

was not a social environment where she felt recognized by either the instructor or her 

peers as a physics person, and thus she continued to not feel like a physics person. 

Q Were there times where you felt recognized as a physics person? 

E Um, I’m not sure how to [….] Uh-uh. Because the classes aren’t really one 

to one. [….] It’s more of, uh, , uh, he’s teaching and you sit. 

Q Right.  Right.  What about in other, like earlier in your education?  Did 

you ever have those kinds of experiences? 

E In physics? 

E I, I’m, I took one physics class so I’m not really … 

Q … Gotcha.  So you wouldn’t describe yourself as a physics person? 

E No. 

 

 Between the initial survey early in her first semester at FIU and the first interview 

at the end of her first year, Elisa changed majors, from mechanical engineering to 

construction management. In the first interview, she explained that “by taking my classes 

I had different interests… like each class I took, other things came to mind” and that she 

settled on construction because she “wanted to be somewhere…with a career that helps 

me solve problems and build stuff and build from my own ideas.”  During the summer, in 

between the two interviews, Elisa audited a physics course because of time constraints on 

her schedule that prevented her from being able to put in the required time to complete it; 

while she initially registered, she dropped the course early in the summer semester. 
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Pilar had previously taken physics courses at another college, saying “I got an A 

but I don’t know anything… so I’m learning physics now in [engineering classes]”. 

Despite this perceived lack of knowledge, she responded positively to questions in her 

first interview about whether she ever felt recognized as a physics person. However, 

despite the question being explicitly about recognition as a physics person, her 

affirmative response is in terms of engineering: 

P I mean, I guess because a lot of the people that, that are my extended 

social circle, are not, they’re not in a STEM field or, you know, come from a very 

detailed math background or anything like that, there’s some things that just like 

oh, wow, really, that I end up knowing that I don’t think is something like very 

outlandish and I end up knowing the answer to and they don’t.  And it’s like oh, 

wow, you’re an engineer.  But I just, I don’t know.  But it’s very few.  You know, 

where I know why this is going to go that way, you know, or something falling or 

don’t do that there, don’t connect it that way. 

 

 She describes her physics recognition experience in terms of “wow, you’re an 

engineer”, but earlier in the interview she says that she hasn’t felt recognized as an 

engineer yet, potentially suggesting a difference in her mind between “engineer as 

someone who does physics” and “real engineer”, which may be due to her major as a 

biomedical engineer. 

 As a non-traditional student who is significantly older than the other participants, 

Pilar’s responses come from a unique perspective with much accumulated socialization. 

That is, she has been an adult for substantially longer than the other students, has worked 

several jobs, some of which were tangentially related to biomedical engineering 

(according to her perceptions). Therefore, while the other students are just beginning their 

interaction with authentic engineering, Pilar has had more experience in this regard, and 

so her first interview may be more similar to the second interview of the other students in 
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this regard. This difference in experience may explain why she showed the same 

interpretation of physics recognition as being recognition as an engineer as Allison and 

Cara did in their second interviews. 

Discussion 

Two broad themes emerged from the interviews regarding how students saw 

themselves in relation to physics and engineering. The first was a decrease in the 

apparent perceived importance of physics skills to doing engineering between the first 

and second interview. The second was a change in identification as a physics person to 

either not identifying at all or interpreting this identification in the context of engineering, 

and to feel less recognized by others as a physics person as time progressed and the 

student advanced towards their engineering degree. 

Engineering as applied physics, increasingly distinct from physics 

A common theme among the students’ description in the first round of interviews 

of the skills required to do engineering were physics skills. Four of the five participants 

explicitly mentioned physics, while the biomedical engineering student with lowest 

physics recognition beliefs sub-score (Elisa) made no mention of physics, instead 

bringing up analytical skills and “seeing patterns”. While it is true that physics 

traditionally requires analytical skill and pattern-sensing, the same is true of the entirety 

of STEM, so I cannot conclude they were talking about physics in code. Instead, it is 

more likely that physics was just not connected with engineering in their minds. 

 Considering this, the change in how the three other DG participants describe the 

required skills in the second interview is telling. Cara, the civil engineer, is the only one 
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to repeat that physics is required to do engineering. She described her experience retaking 

a physics class as “when I re-took it in FIU and I like understood and I got good grades 

then I definitely felt like engineering was for me, I could actually do physics,” when 

asked about a time that she felt recognized as a physics person; she connected doing 

succeeding in physics with feeling like she could succeed at engineering. Allison 

meanwhile describes engineering as “applied physics”, with other parts of her interview 

suggesting that she sees engineering-as-applied-physics as something distinct from 

physics itself. For example, when she described giving “help on physics related things 

but they’re not physics, they’re applied physics.” Finally, Pilar drops all mention of 

physics from her list of skills required of an engineer, mentioning only “logical 

thinking…math and… technical know-how”. These skills are of course relevant to 

physics, but they are not unique to physics among STEM fields, and the decline in 

physics associations among these participants is notable. 

Physics identification anchored by performance, shifting to engineering 

Interview participants initially reported a wide range of identifications with 

physics, and feelings of recognition as a physics person. While this may be expected, 

given the range of quantitative scores they received (see Table 24), the responses from 

the survey and the responses to the interview were not in complete agreement, as 

expected due to the time lapse (and intervening engineering experiences that occurred) 

between data collection. 

Allison, Betty, and Cara all reported feeling recognized as a physics person in the 

context of high performance in their previous physics classes; they described getting 
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good grades and positive interactions with their professors as the primary justification. As 

second-year students, they all had taken physics courses before participating in the 

interview, and so had direct experiences with college physics.  

On the other hand, Elisa was a first year student who, at the time of the first 

interview, was only a few weeks into her first physics course. When asked whether she 

felt recognized as a physics person, she responded with confusion, because she “just 

started a couple, like two, three weeks ago.” She therefore displays a similar connection 

between physics recognition beliefs and the formal environment of a college classroom as 

the previous three students, she just did not feel she had sufficient experience/recognition 

in a relevant environment at the time of the interview.  

For these students early in their engineering careers, their conception of physics 

recognition seems anchored to their performance in an academic setting. Not just that 

high performance in the form of good grades bring the potential for recognition from 

their professor and peers, but also that in the absence of such a setting, the idea of being 

recognized as a physics person seems to be a non-sequitur. By the second interview, this 

connection between academic settings and physics identity was strengthened, while the 

interpretation of physics recognition became more associated to engineering. 

When discussing being recognized as a physics person, both Allison and Pilar 

frame their response by contextualizing their discussions in engineering. Allison said “I 

mean like physics is engineering but yeah”, while Pilar mentioned her friends saying 

“Wow, you’re an engineer”. Whereas before Allison talked about being recognized as a 

physics person because of her competence in the physics classroom and her physics 
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classmates coming to her for help, she now qualifies her response as feeling recognition 

as an engineer.  

In Cara’s second interview, she also brings up engineering when asked about 

physics recognition. In her case, however, she is discussing how retaking physics at FIU 

and succeeding (both in terms of increased understanding and better grades) made her 

realize engineering was for her. In this case, progressing to the second interview, Cara 

shows the same anchoring she did in the first interview, with her recognition being 

contingent on successful performance. 

At the time of the second interview, neither Betty nor Elisa feel recognized as a 

physics student, for different reasons. Elisa maintained her previous position that her lack 

of experience in physics explained why she did not feel recognized as a physics person. 

One physics class was not enough to change her physics identity, but notably she seems 

to believe that the number of classes is more essential to this identity than the quality of 

those classes. On the other hand, Betty changed from feeling recognized as a result of her 

performance in physics classes to strongly identifying as not a physics person. Having a 

close relationship with a physics major (her boyfriend) exposed her to someone who 

presumably has very high positive physics identity (for example, she talks about him 

going “googly-eyed over quantum mechanics”), which disrupted her tenuous connection 

to a physics identity which was anchored entirely on her class performance. Once she 

was given an idea of what a “real” physics person was like, in the case of her boyfriend, 

she was better able to define herself in contrast. 

Allison also reported having experience with a physics major over the summer 

between the first and second interviews. Her situation (a friend met during a summer 
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research experience) differed from Cara’s (a romantic partner) in several important ways, 

including the duration and closeness of their relationship. Their reported physics identity 

at the first interview also differed: Allison identified with physics much more strongly 

than Cara. Perhaps most importantly, Allison’s friend was discontented with physics, and 

wished to change her major, whereas Cara’s boyfriend was very positive in his 

interactions with physics. Thus, while Cara had a quintessential positive example of a 

“physics person” to compare herself to, Allison did not, which may explain the 

differences in their responses to these experiences. 

Conclusions and Implications 

As the students progressed in their education and were exposed to increasing 

engineering content and experiences (and, to some extent, physics content), they began to 

see physics at once increasingly integrated into engineering as well as feeling 

increasingly distant from it as a distinct domain. Student physics recognition beliefs, a 

key facet of their physics identity, to reveal more and more of a connection to 

engineering context, validating the model of physics identity as a core predictor of 

engineering identity in the absence of authentic engineering experiences (Godwin et al., 

2016). Being recognized as a physics person becomes less anchored to a formal academic 

setting in which recognition is conferred by way of grades and recognition from peers 

and authority figures, and can instead be generated through engineering contexts. 

However, in terms of seeing themselves as physics people, the interview 

participants seemed to universally draw away from identifying with physics. The lower 

their recognition beliefs at the start, the more they disengaged, even as their conception of 
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physics recognition was modified to include engineering. A distinction between explicit 

identification, which was more likely earlier on (but only after accruing “enough” 

academic physics experiences), and implicit identification-by-proxy as their engineering 

identity replaces their physics identity as their primary STEM domain identification 

relevant to their lives. 

In summary, I find a twofold conclusion: the validation of physics identity as a 

predictor of engineering identity for students with less prior engineering experience, and 

a time-dependent evolution of physics identity as it relates to their engineering identity 

(and relevant college experiences).  Thus, continued focus on physics identity over the 

long term as a key measure of interest for engineering students may be less than ideal 

because of changing conceptions of what physics means and entails in the context of 

engineering.  

Limitations of this Study and Directions of Future Work 

This interview study was conducted with small set of deliberately chosen 

participants, which may restrict the generalizability of the findings. This generalizability 

to the greater engineering student population may be especially limited given the 

interview participants were women of color from the Caribbean and South America, 

whereas the majority of undergraduate engineering students in the United States are male 

and white (NSF, 2015). This fact provides an obvious direction for future research, 

conducting a similar analysis on another sample population to extend the findings. 

Only the survey data and two interviews were included for each participant in this 

analysis, which represents the initiation of a longitudinal study which will be extended 
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into the future. As such, the differences found between interviews consisted primarily of 

the two data sources for each student. Though I combined these data with information 

from the quantitative survey to strengthen my claims, combining the interview data with 

additional follow-up interviews which are more targeted towards these research questions 

(as opposed to the generalized goals of the research collaboration) may provide greater 

depth of understanding than is possible with the currently-available data sources. Such a 

longitudinal study would also serve to better answer the question of how FTP constructs 

relate to the observed changes in student physics identity. 
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CHAPTER V: CONCLUSIONS 

Introduction and Summary of Findings 

In this chapter I summarize the findings of this dissertation and the overall 

conclusions that can be drawn from the findings of all the chapters together. I follow that 

up with a discussion of implications to education research and teaching, followed by 

some directions for future research in different areas that can build on these results. 

In Chapter 2, I found significant associations between several affective constructs 

and engineer students’ physics identities. Among the constructs with significant 

associations were Future Time Perspective constructs of Connectedness, Perceptions of 

Future, and Instrumentality. When the linear model was extended to include interest in 

different engineering majors, I found a tiered pattern of effects on the original model, 

broadly corresponding to three different classes of engineering. The negative association 

found for two of these factors motivated in part the research in the fourth chapter to 

further investigate this connection. Evidence of a significant interaction of theoretical 

constructs from a variety of frameworks helped motivate the search for a way to represent 

the distributions of these constructs in relation to each other, spurring on the adaptation of 

topological data analysis in the third chapter. 

In Chapter 3, I mapped out the space of affective constructs, using a new 

technique in education research to reduce the thirteen-dimensional space to a two-

dimensional representation. I provided several examples of interesting differences that 

could be found from the map. I found one, large group of attitudinally similar students, 

which I describe as the normative group, and found a small number of ways in which 
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students tend to differ from this normative profile. I also found evidence that the 

normative attitudinal group was statistically overrepresented by white male students, and 

discussed some implications of this finding for STEM recruitment and retention. 

In Chapter 4, I analyzed interview transcripts of several FIU students selected for 

their location in the map generated in chapter three to investigate the evolution of 

students’ physics identities and how they see physics as relevant to engineering. I found 

evidence that students’ conception of what counted as physics recognition events 

changed from being anchored in their performance in physics classes to being 

incorporated into their engineering recognition beliefs. At the same time, students 

perceived physics as less salient to their engineering education and careers as they 

continue to advance in their education. 

Summary of Answers to Research Questions 

1. For the introductory engineering students at the four collaborating institutions, how 

are various attitudinal factors associated with students’ physics identity beliefs? 

I found several statistically significant associations between attitudinal factors and 

physics identity beliefs. The significant factors were Belongingness, Expectancy, 

Connectedness, Instrumentality, Perceptions of Future, Science Agency Beliefs, 

Engineering Agency Beliefs, Openness to Experience, and Math Identity. Of these, two 

(Connectedness and Instrumentality) were negative, and the rest were positive.  

2. How are the associations identified in Research Question 1 mediated by students’ 

interests in various engineering disciplines? 
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No statistically significant differences were found in the associations identified in 

the first question compared to models with an added interest term. However, I did find 

roughly three “tiers” of responses that the model could have to the introduction of an 

interest term, depending on how much the variance explained by the model was improved 

by the introduction of an additional term. 

3. How are students distributed in the space of affective beliefs? 

I found evidence for one large “normative group”, surrounded by several “near-

normative” groups which differed from the normative group in distinct ways. The 

characterization of these groups in terms of several affective constructs is given in Table 

15. Students in the “disparate group” (i.e., in neither the normative or near-normative 

groups) were spread across the space. 

4. What demographic differences exist between students holding normative beliefs and 

those with non-normative beliefs? 

White-identified and male-identified students were statistically overrepresented in 

the normative group compared to the proportion of those students in the overall sample, 

whether considered as independent demographic categories or in combination. I did not 

find any significant differences between students who identified with a disability and 

those who did not, nor did I find a significant difference between students who identified 

as straight and those who did not. 

5. How do students’ perceived connections between engineering and physics change as 

they become more experienced in engineering? 

Students expressed less of a perceived connection between engineering and 

physics in their second interviews compared to the first. Physics skills were seen as more 
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distinct from engineering in the second interview, and not necessarily required to do 

engineering. 

6. How does the nature of students’ physics recognition beliefs change over time? 

Students’ physics recognition beliefs became more associated with engineering 

over time. They tended to interpret questions about being recognized as a physics person 

in engineering contexts. 

Conclusions and Implications 

Implications for Education Researchers 

Education research often focuses on a single theoretical framework at a time, 

interpreting results and generating theories in terms of that framework. Unexplained 

variance in these models is a mix of effects from unexamined constructs from unused 

frameworks along with the individual error terms present in the model. However, as the 

previous chapters results, the interplay between factors of different frameworks is 

nontrivial at best. 

However, this complexity is also a boon, as it hints at the possibility to enrich the 

field’s understanding at little cost. The intersection of these factors hints that gains in 

explicative power are available on the basis of the same frameworks which have been 

previously well-studied. While individual errors terms are certainly present, the ability of 

composite frameworks to explain relationships reduces the need to develop new and 

independent theories, as the current theories may prove sufficient in combination to 

explain far more than they might individually. 
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The model I constructed of factors associated with physics identity extends 

beyond the framework proposed by Hazari et al. (Hazari et al., 2010; Potvin & Hazari, 

2013). In addition to the model of identity comprised of three sub-constructs, these other 

constructs can be added as precursor (e.g., in the case of traits like Openness to 

Creativity) or resultant (e.g., in the case of Expectancy) affects, thus linking the Identity 

framework to other theoretical frameworks in psychology and education research. These 

extensions are of even greater benefit when considering structural equation models (e.g., 

(Godwin, 2016; Godwin, Potvin, Hazari, et al., 2013; Potvin & Hazari, 2013)) which 

already combine a few constructs. 

The different STEM domain identities (science identity, math identity, physics 

identity, etc.) have proven to be exceptionally useful frameworks for understanding 

student choice and persistence in college physics, math, and engineering. However, 

results from Chapters 2 and 4 suggest that these frameworks are not as universally 

generalizable to all engineering students as previously suggested. The different groupings 

of majors discussed in Chapter 2 (based on how they interacted with the affective linear 

model of physics identity) invite different considerations, as each is not as connected to 

physics as, e.g., mechanical engineering. The one-size-fits-all model for how physics 

identity is connected to engineering identity may not be appropriate to apply to engineers 

from fields perceived by students to be different from physics, even if physics is a 

prerequisite for the program and their later understanding of engineering. 

Further, the use of the identity framework, particularly with regards to 

interdisciplinary connections between identities (e.g., the use of physics identity as a 

predictor of engineering identity), appears to be constrained in its applicability to the 
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transitionary period between high school and college. The use of science, math, and 

physics identities as predictors of engineering identity and choice of engineering career 

was motivated by the fact that many students did not have many previous authentic 

engineering experiences at the point where they entered their program (Godwin, Potvin, 

Hazari, et al., 2013). As the results of Chapter 4 show, however, these relationships may 

be highly time-dependent as rapidly gained experiences in college drastically affect how 

students author their identities. 

In summary, the overall implication of this dissertation is the possibility of further 

understanding of how students’ identities (in the context of the Identity framework) are 

influenced by and continue to influence their affects throughout their college experience. 

Implications for Educators and Program Directors 

While not every engineering student needs to become a physicist, or have the 

highest identification with physics, nevertheless many engineering programs still require 

some degree of physics coursework for engineers of all stripes. Despite some 

specialization of these introductory physics classes occurring, such distinctions are often 

along lines of math ability (Calculus vs Pre-Calculus) as opposed to the major of the 

engineer taking the class. Other majors (e.g., Biology, Education) can have physics 

courses with content tailored to that discipline, such as Physics for Life Sciences, or 

Physics for Teachers, but little difference exists between the physics classes required of 

engineers in different fields at the same university. However, the physics required for a 

biomedical engineer is very different from that required for an aerospace engineer, and 

both are different from what is required for an industrial engineer or a computer engineer.  
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Therefore, there may be substantial benefits to be gained by restructuring the “one 

size fits all” approach to introductory physics classes in light of the differences found in 

how engineering interest and physics identity interact. The majority of these benefits may 

be realizable by creating groups of engineering majors with similar relationships to 

physics to each other. By making physics something the student sees as integral to their 

form of engineering, their engineering interest and engagement could transfer to 

increased engagement in physics. 

Future Directions 

In addition to the possibilities for future work discussed in the preceding chapters, 

future research building on the findings of this dissertation can investigate several 

possibilities. 

The structural equation model predicting physics identity could be extend to 

include additional affective constructs beyond the three sub-constructs of 

Performance/Competence beliefs, Recognition beliefs, and Interest, using the 

associations found in Chapter 2. Whether these new associations represent an 

improvement to the model can therefore be empirically tested by investigating whether 

significant paths exist between those factors. Likewise, the larger structural equation 

model predicting engineering career choices via engineering identity could be similarly 

extended, and improvements could be empirically verified. 

Additionally, the existence of domain identities in other fields (such as biology, 

computer science, etc.) can be investigated, including whether or not the same Identity 

framework used in this dissertation is extensible to those fields. Even further work could 
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connect those domain identities to a prediction of discipline-specific engineering identity 

and career choice. For example, the engineering identity of a biomedical engineer may be 

more strongly informed by their biology identity as they enter college, rather than their 

physics identity. 
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Appendix 2: Interview Protocols, First Interview 

Notes for Interviewer  
Wear casual clothes, something that is similar to what the students would wear in 

terms of level of dress (you need not wear yoga pants). Open the interview with some 

casual questions such as, “How is your day going?”, “How has the semester been?”, 

and/or “Did you go to the game on Saturday?” If they are talking for a bit on these points 

let them keep going do not cut them off. You want them to talk throughout the interview 

get them going early. 

Avoid bringing in large pieces of technology if possible as they can be 

distracting/intimidating. Find a space that does not have a formal interview set up (you 

behind a desk and them on the other side). If the room has more than one seating option 

let the student pick where they want to sit as that will make them more comfortable 

(some people don't like having their backs to the door).  

Having a second person in the room can be helpful so that you can have time to 

pause and think or someone else can make sure that you have asked all the questions/all 

answers given by students are actually clear.  

Try to avoid asking the student to speak in a different tone or volume than their 

natural speaking voice as this may make them feel uncomfortable or inadequate. Instead 

move the recording device around if needed. 

This is a semi-structured protocol.  Interview questions will be asked as listed, but 

additional follow up questions may be included based on individual student responses to 

probe student answers. 

Notes to Give to Interviewee  
Before starting the interview frame the interview as a conversation or a dialogue. 

Inform the student that this is the interview protocol (show them the physical document) 

and tell them you will ask these questions but you may also asked more to gain increased 

understanding of their story. Tell them all data will be kept anonymous and that you want 

them to express their opinion. Stress that there are no right or wrong answers only the 

story they have to tell is what we are interested in. Some questions may seem repetitive 

but you want to make sure that you are getting the full depth of the story.  

Flow of the Interview 
1.) Story 

2.) Identity 

3.) Belongingness 

4.) Particular construct of interest (this will depend on each participant's factor 

scores) 

 Control (Similar Variable) 

 Differentiating Variable  
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Story 

 How did you get into engineering? 

◦ Sit back, wait, and listen 

Follow-ups if needed: 

▪ What factors do you think influenced this decision? 

◦ Have you selected an engineering major? 

◦ Why did you choose to major in [the type of engineering you decided on]? 

▪ Did you consider other disciplines?  

 [If yes] What helped you settle on the one you picked? 

▪ Did you consider other majors outside of engineering? 

◦ Why did you choose to go to college? 

▪ Why this college?  

◦ Have you had an individual or individuals who influenced your choice of 

engineering? 

Identity 

 Do you see yourself as an engineer? 

◦ Why or why not? 

◦ [If yes] Can you give me some examples of ways in which you see yourself as 

an engineer?  

◦ [If no] What would help you see yourself as an engineer? 

 What are you impressions of engineering? 

 In your words, what is an engineer? 

◦ What do engineers do? 

◦ What skills do you view as important for engineering? 

 Who can do engineering?  

 Do you feel that you can do engineering? 

◦ Why/why not? 

◦ Do you feel that you can understand engineering? 

◦ Do you feel that you can do well in engineering? 

 Was there a time when you felt recognized as an engineer? 

◦ Can you tell me about that experience? 

 What engineering experiences, if any, have you had outside of the classroom? 

Belongingness 

 Does engineering feel like a good fit for you? Why or why not? 

 Do you feel like you belong in engineering? How? 

 What characteristics of yourself make you like an engineer? 

◦ What characteristics of yourself make you unlike an engineer? 

 Do you think that engineering is a good fit for your [friends in engineering, 

classmates, etc.]? Why or why not? 

 Do people with different backgrounds [-OR- people who grew up differently than 

you did] feel included in engineering? 

 Do people who think differently than you feel included in engineering? 
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Specific theoretical frameworks to ask for each group 

The Normative Group Instrumentality, Perceptions of Future, Connectedness 

<deprecated group> Value, Neuroticism  

Near-normative Group 1 Value, Performance Approach 

Near-normative Group 2 Neuroticism, Value and Connectedness 

Near-normative Group 3 Performance Approach, Grit: Consistency of Interest 

Near-normative Group 4 Performance Approach, Extroversion, Grit: Consistency 

of Interest 

Near-normative Group 5 Extroversion, Physics Recognition, Value 

Near-normative Group 6 Instrumentality, Physics ID: Rec 

Near-normative Group 7 Connectedness, Work Avoid 
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Specific Theoretical Frameworks 
Refer to the above chart for selecting the following frameworks to discuss with 

participants. These selections should be made and documented prior to conducting the 

interview.  If another factor besides the ones on the list for the participant's group (above 

chart) seems to be coming up, there is some leeway to explore other factors during the 

interview as well.  

Perceptions of Future 

 What are your goals for the future, ideally? 

◦ What are your personal goals for the future? 

◦ What are your career goals for the future? 

◦ Describe where you see yourself in 10 years 

◦ How did you develop [insert student vision for the future]? 

 Given your knowledge about your field and the current state of your field, what 

do you think you can realistically be in the future? 

 What are you actively striving for? 

◦ What goals or tasks are you currently pursuing to reach your described 

future? 

 What do you not want to be in the future? 

◦ In other words, what jobs, or careers do you know you do not want to pursue? 

 Why are you pursuing an engineering degree? 

◦ How confident are you in your choice of major? 

 

Perceived Instrumentality 

 What parts of your education do you see as relevant to your future? 

◦ What skills are relevant to your future? 

◦ Do you see what you are learning in your courses as useful to your future? In 

what ways? 

◦ What parts of your education do you see as not relevant to your future? 
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Connectedness  
(a general tendency to make cognitive connections between the present and the 

future) 

 Are you taking steps to reach your future goals? If yes, can you describe the steps 

you are taking? 

 Do you spend time planning for the future? Why or why not? 

◦ Do you think it is important to have goals 5 or 10 years in the future? 

 Does the future dictate what actions you take now? How? In what ways? 

 

Work Avoid 

 How much work do you dedicate to your classes? Your engineering classes? 

 How much time do you spend on tasks related to your classes? 

 How do you react when a class takes a lot of time and effort to get the grade that 

you desire?  

◦ What about classes that do not take a lot of effort? 

◦ What do you see as a desired grade for you classes? 

  What do you think about classes that do not need much time or effort to get a 

passing grade? 

 

Neuroticism 

 Do you worry a lot about the future or things that might go wrong? 

◦ [If Yes:] What kind of things do you worry about? 

◦ [If No:] Why not? 

 Can you describe a time when you felt anger or bitterness? 

◦ [If Yes:] Is it difficult for you to get angry even when it's appropriate? 

◦ [If No:] What is an example of a time in which you were bitter/angry? 
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Extraversion 

 Would you describe yourself as a leader?  

◦ [If Yes:] What are some good examples of how you have been a leader? 

◦ [Follow up:] Do others ever consider you to be overbearing or too demanding 

when you were a leader? How? 

 Are you more distant or reserved than most people you know? 

◦ [If Yes:] Has this affected the number of friends that you have? 

 

Performance Approach 

 Do you consider yourself a good student? How so? Do you feel you need to prove 

this to your peers? 

 Are you a competitive student? 

◦ In classes, is it important to you to do better than your better than your 

classmates? What about your assignments? Exams?   

 

Physics Identity: Recognition 

 Do you feel recognized as a physics person? Who recognizes you as a physics 

person? 

 Tell me about a time that you felt recognized in physics. 

 

Value  

(Participants with high FTP tend to show decreased de-valuing of future goals) 

 What are your goals? Which of these goals are most important to you? Why? 

 Do you consider the future when assessing what is most important to you? Why 

or why not? In what ways? 

 Do you consider the future when making your rankings of what is was most 

important to you? Why or why not? In what ways?  
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Grit: Consistency of Interest 

 When you set a goal, do you stick with it? 

 What happens when you face challenges towards pursuing your goal? 

 Can you give me an example of a time when you stuck with your goals? 

◦ What about a time when you abandoned a goal? 

 

Career Expectations 

 How do you define success? 

 How would you know that you had become successful? 

 What outcomes would indicate that someone is successful? 
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Appendix 3: The R Analysis Code 

This is the complete code used to complete the quantitative analysis in the current 

work, including lines which ended up being superfluous to the final reported analysis and 

results, as exploratory analysis and dead ends. 

Mapper.R 

## mapper function 

## version 1.2 

 

library(igraph) 

library(dendextend) 

 

## example function call 

# g = mapper(apsdata, apsweights, filter.method = "population", cluster.method = 

"single", N = 20, overlap = .5) 

 

#### this is automatically handled in mapper.plot() now 

## colors are set up at the moment for a 256-point palette, 0 to 255. To get the heatmap 

colors I was using 

## run the following command 

# 

# palette(rev(heat.colors(255))) 

# 

## which reverses the normal heatmap, so white is actually cold instead of super-hot like 

normal fire. 
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## red is a cooler color for heat, anyway, and draws the eye better. 

 

## this doesn't do what I want yet 

#setClass("mapper", contains = "igraph") 

 

mapper = function(data, filter.weights, 

                  filter.method = "size", # can also select "population" 

                  cluster.method = "single", # can also select "average", "complete", "ward" 

                  ## cannot do centroid clustering because of the tree-cutting method used, fix 

later? 

                  N = NULL, overlap = 0.5, h.list = NULL, max.k = NULL, 

                  simplify = TRUE, set.filter.color = TRUE, filter.color.high = FALSE, 

                  distance.matrix = FALSE, set.layout = TRUE, constant.cut = FALSE){ 

  #### Readme #### 

    # data = matrix/frame containing n-many d-dimensional observation coordinates 

    # weights = list of n-many weights, the result of a filter 

    #           function applied to data 

    # filter.method = type of data grouping for how to split the filtered data 

    # cluster.method = method passed to heirarchal clustering method 

    # N = number of data points in each slice of equalN; should be at least about 20 for 

good knee calculations 

    # overlap = fractional overlap between slices to join them together 
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    # h.list = pre-provided cuts, likely from a previous iteration of the program. Must have 

length N. 

    #         Supercedes constant.cut if both are present and h.list is satisfactory 

    # max.k = maximum number of allowable clusters, used in NbClust; if a slice has 

fewer points than this, that slice 

    #         will have a max.k equal to the number of points in the slice, minus 1. !Problem 

? 

    # simplify = whether to remove multiple edges between nodes that can result from 

overlap, in the graph 

    # set.filter.color = whether to assign node colors based on a 255-point color scheme 

    # filter.color.high = whether high values should get dark red 

    # set.layout = whether to run mapper.layout and store to the layout before returning; 

sets layout.auto 

    # constant.cut = whether to automate the cut-height selection with a single value for all 

slices 

          # defaults to FALSE, but you can enter a number here which will be passed to the 

cutting 

 

 

  if(length(h.list) == 0){ 

    h.true = FALSE 

  } else if(length(h.list) > 0 & length(h.list) != N){ 
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    warning("The provided h.list is of improper length, and will be ignored. Note: h.list 

must have N-many entries.") 

    h.true = FALSE 

  } else{h.true = TRUE} 

 

  if(filter.method == "population"){ 

    g = make_rough_pop_graph(data, filter.weights, cluster.method, N, overlap, max.k, 

distance.matrix, constant.cut, h.list, h.true) 

    hlist = attributes(g)$hlist 

    g = connect_rough_pop_graph(g, data, filter.weights, N, overlap, distance.matrix) 

  } 

 

  if(filter.method == "size"){ 

    g = make_rough_size_graph(data, filter.weights, cluster.method, N, overlap, max.k, 

distance.matrix, constant.cut, h.list, h.true) 

    hlist = attributes(g)$hlist 

    g = connect_rough_size_graph(g, data, filter.weights, N, overlap, distance.matrix) 

  } 

 

  V(g)$members = V(g)$name 

  # set the names of each vertex equal to the NUMBER of points making it up 

  for(i in 1:length(V(g))){ 

    g = set.vertex.attribute(g, "membersize", i, length((V(g))$members[[i]])) 
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  } 

 

  if(simplify == TRUE){ # removes multiple edges that can come from making the 

overlapping connections 

    g = simplify(g) 

  } 

 

  if(set.filter.color == TRUE){ 

    ## palette(heat.colors(X)) has X many shades of colors 

    ## starting with dark red at the low end and going to 

    ## white at the high end 

 

    ## since we want red to be "good", depending on whether the filter 

    ## measures something like density (high = good) or distance (low = good) 

    ## we want the dark red to be either high or low. 

 

    ## in all cases, the "color" scale will go the same way; we simply reverse the 

    ## palette in one situation vs the other 

 

    V(g)$color = 254*scale01(V(g)$filter)+1 # colors proportional to filter values 

    # the plus one because for some reason a color of 0 is super bad 

    if(filter.color.high == FALSE){ 

      g$color.high = FALSE 
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      g$color.palette = palette(heat.colors(256)) 

    } else{ 

      g$color.high = TRUE 

      g$color.palette = palette(rev(heat.colors(256))) 

      ## since the dark reds are normally low, we reverse the palette 

    } 

  } 

  ## store the mapper creation settings in the object to reference later 

  g$filter.weights = filter.weights 

  g$filter.method = filter.method 

  g$cluster.method = cluster.method 

  g$N = N 

  g$overlap = overlap 

  g$constant.cut = constant.cut 

  g$h.list = hlist 

  g$layout = mapper.layout(g) 

  V(g)$gid = c(1:length(V(g))) 

 

  return(g) 

 

} 

 

mapper.reduce.clutter = function(map, N = 2){ 



174 

 

  attr = attributes(map) 

  c = clusters(map) 

  M = c$membership 

  S = c$csize 

  clutter.vertices = which(N >= S[M]) 

  map = map - clutter.vertices 

  attributes(map) = attr 

  map$reduce.clutter = TRUE 

  ## now we need to slice things like the layout and weights to just include those 

corresponding to the Ids we have 

  map$layout = map$layout[V(map)$gid,] 

  map$filter.weights = map$filter.weights[V(map)$gid] 

  return(map) 

} 

 

mapper.reduce = function(my.map, N = 1, keep.attr = TRUE){ 

  ## checks each connected component for the number of unique members 

  ## and removes all components with N or less total unique members among nodes 

  map.copy = my.map # store a copy so we don't destroy our iterator 

  attr = attributes(my.map) 

  c = clusters(my.map) 

  M = c$membership 

  for(i in 1:c$no){ 
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    if(length(unique(unlist(V(map.copy)$members[M == i]))) <= N){ 

      clutter.vertices = which(M == i) 

      clutter.id = V(map.copy)$gid[clutter.vertices] 

      clutter.vertices = match(clutter.id, V(my.map)$gid) 

      my.map = my.map - clutter.vertices 

    } 

  } 

  if(keep.attr == TRUE){ 

    attributes(my.map) = attr 

    attributes(my.map)$reduce = TRUE 

    ## now we need to slice things like the layout and weights to just include those 

corresponding to the Ids we have 

    attributes(my.map)$layout = attributes(my.map)$layout[V(my.map)$ids,] 

    attributes(my.map)$filter.weights = attributes(my.map)$filter.weights[V(my.map)$ids] 

  } 

  return(my.map) 

} 

 

mapper.filter.size = function(map, N=1){ 

  newmap = map - V(map)[V(map)$name <= N] 

  return(newmap) 

} 
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mapper.recolor = function(map, N = 256){ 

  V(map)$color = (N-1)*scale01(V(map)$color) +1 

  return(map) 

} 

 

mapper.plot = function(map, layout=NULL, new.palette=NULL){ 

  ## plots the map, and then overlays a set of invisible points on top of the map 

  ## to be used with the identify function to read out vertex attributes 

  if(length(layout) > 0){ # i.e. we stated a layout 

    # layout = layout; "save" time by not actually running this line 

  } else if(length(map$layout) > 0) { # i.e. the map has an innate layout 

    layout = map$layout 

  } else{ # i.e. no layout provided 

    warning("no layout provided, generating random.auto layout.") 

    layout = layout.auto(map) 

  } 

 

  if(length(new.palette) > 0){ 

    old.palette = palette() 

    palette(new.palette) # use the palette stored in the map 

 

    plot(map, layout = layout) 

    points(layout, type = "n") 
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    palette(old.palette) # reset it to what it was 

  } else if(length(attributes(map)$color.palette) > 0){ 

    old.palette = palette() 

    palette(attributes(map)$color.palette) # use the palette stored in the map 

 

    plot(map, layout = layout) 

    points(layout, type = "n") 

 

    palette(old.palette) # reset it to what it was 

  } else{ 

    warning("no palette given, using the current environmental palette") 

    plot(map, layout = layout) 

    points(layout, type = "n") 

  } 

} 

 

mapper.find = function(index, map, layout, attr = "members"){ 

  ## type can be either "data", to find index in V(map)$members, or 

  ## it can be "vertex", to find index in V(map) 

 

  ## searches through the map to find the items which match index and plots the map with 

those vertices 
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  ## highlighted in color (red), everything else is made white 

 

  ## save the old values for later so we can change them without breaking things 

  old.palette = palette() 

  old.colors = V(map)$color 

  palette(c("white", "red")) 

  V(map)$color = 1 # whitewash everything, then we paint the vertices we want red 

 

  if(attr == "ids"){ 

    v(map)[index]$color = 2 

  } else{ 

    vertex.list = NULL 

    mlist = get.vertex.attribute(map, attr, V(map)) 

    for(i in 1:length(mlist)){ 

      if(sum(!is.na(match(index, mlist[[i]]))) > 0){ 

        vertex.list = c(vertex.list, i) 

      } 

    } 

    V(map)[vertex.list]$color = 2 

    mapper.plot(map, layout, FALSE) 

  } 

  ## put the old values back where they were 

  V(map)$color = old.colors 
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  palette(old.palette) 

} 

 

mapper.identify = function(map, layout, attr = "members"){ 

  ## runs the identify function on a previously mapper.plotted map, using the given 

layout, and returns 

  ## the chosen "attr" attribute of the selected vertices. Labels are generated from the 

object "map" 

  # 

  ## returns the ids of the selected vertices 

  labels = get.vertex.attribute(map, attr) 

  ids = identify(layout, labels = labels) 

  return(ids) 

  ## given the idrs, you can call V(map)$attr[id] to get the value of that attribute at that id, 

  ## if the labels on the graph are blurry 

} 

 

mapper.layout = function(map, layout.type = "layout.auto", norm = TRUE){ 

  ## returns a two-column list of coordinates for each point in the map according to the 

chosen layout type 

  ## this layout can be independently saved to ensure a constant plot of the same map, 

rather than letting 

  ## R and/or igraph give you a different shape each time. 
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  ## only layout.auto and layout.reingold.tilford are enabled so far 

  if(layout.type == "auto" || layout.type == "layout.auto"){ 

    layout = layout.auto(map) 

    if(norm == TRUE){ 

      ## the natural return of the igraph maps are normalized to have coordinates between -

1 and 1 

      ## this makes the layout identical in terms of the absolute numbers, rather than 

relative numbers 

      layout = layout.norm(layout, xmin = -1, xmax = 1, ymin = -1, ymax = 1) 

    } 

  } else if(layout.type == "tree" || layout.type == "layout.reingold.tilford"){ 

    r = which(V(map)$filter == min(V(map)$filter)) 

    print(r) 

    layout = layout.reingold.tilford(map, root = r) 

    if(norm == TRUE){ 

      ## the natural return of the igraph maps are normalized to have coordinates between -

1 and 1 

      ## this makes the layout identical in terms of the absolute numbers, rather than 

relative numbers 

      layout = layout.norm(layout, xmin = -1, xmax = 1, ymin = -1, ymax = 1) 

    } 

  }else{ 
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    warning("only some layouts enabled so far, returning layout.auto") 

    layout = layout.auto(map) 

    if(norm == TRUE){ 

      ## the natural return of the igraph maps are normalized to have coordinates between -

1 and 1 

      ## this makes the layout identical in terms of the absolute numbers, rather than 

relative numbers 

      layout = layout.norm(layout, xmin = -1, xmax = 1, ymin = -1, ymax = 1) 

    } 

  } 

  return(layout) 

} 

 

make_rough_pop_graph = function(data, filter.weights, cluster.method, N, overlap, 

                                max.k, distance.matrix, constant.cut, h.list, h.true){ 

  labelblank = c(1:length(data[,1])) # for us to slice labels out of for the trees 

  g = graph.empty(directed = FALSE) # to add vertices to later as we get clusters 

  h = constant.cut 

  ## counts down from the highest ??weight in n-many evenly (or as much as possible) 

distributed groups 

  sortweight = sort(filter.weights, decreasing = TRUE) 

  nweights = length(sortweight) 
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  #first slice is one-sided 

  rule = filter.weights >= sortweight[ceiling((1+overlap)*nweights/N)] 

  if(distance.matrix == TRUE){data.section = data[rule,rule]} else{data.section = 

data[rule,]} 

  labels = labelblank[rule] 

 

  ## do clustering 

  if(!h.true){ 

    if(!constant.cut){ 

      h = ask_h(data.section, method = cluster.method, max.k = max.k, distance.matrix = 

distance.matrix) 

    } 

  } else{ h = h.list[1]} 

  if(is.na(h)){ 

    h = ask_h(data.section, method = cluster.method, max.k = max.k, distance.matrix = 

distance.matrix) 

    # lets you edit single points in place 

  } 

  hlist = c(h) 

  if(distance.matrix){tree = hclust(as.dist(data.section), method = cluster.method)} 

  else{tree = hclust(dist(data.section), method = cluster.method)} 

  tree$labels = labels 

  clusters = cutree(tree, h = h) 
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  ## start building the network 

  g2 = graph.empty(directed=FALSE) + vertices(labels) 

  #plot(g2) 

  g2 = contract.vertices(g2, as.vector(clusters)) 

  ## add a vertex attribute to shade the vertices by the average filter value for the cut 

!Problem (assign per vertex) 

  for(j in V(g2)){ 

    names = V(g2)$name[[j]] 

    V(g2)[j]$filter = mean(filter.weights[names]) 

  } 

  V(g2)$N = 1 

 

  g = suppressWarnings(g %du% g2) ## add on the new cluster vertices; nothing is joined 

yet 

 

  for(i in 2:(N-1)){ 

    top = sortweight[ceiling((i-1 - overlap)*nweights/N)] 

    bottom = sortweight[ceiling((i + overlap)*nweights/N)] 

 

    rule = filter.weights >= bottom & filter.weights <= top 

    if(distance.matrix == TRUE){data.section = data[rule,rule]} else{data.section = 

data[rule,]} 
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    labels = labelblank[rule] 

 

    ## do clustering 

    if(!h.true){ 

      if(!constant.cut){ 

        h = ask_h(data.section, method = cluster.method, max.k = max.k, distance.matrix = 

distance.matrix) 

      } 

    } else{h = h.list[i]} 

    if(is.na(h)){ 

      h = ask_h(data.section, method = cluster.method, max.k = max.k, distance.matrix = 

distance.matrix) 

      # lets you edit single points in place 

    } 

    hlist = c(hlist, h) 

    if(distance.matrix){tree = hclust(as.dist(data.section), method = cluster.method)} 

    else{tree = hclust(dist(data.section), method = cluster.method)} 

    tree$labels = labels 

    clusters = cutree(tree, h = h) 

 

    ## start building the network 

    g2 = graph.empty(directed=FALSE) + vertices(labels) 

    #plot(g2) 
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    g2 = contract.vertices(g2, as.vector(clusters)) 

    ## add a vertex attribute to shade the vertices by the average filter value for the cut 

    for(j in V(g2)){ 

      names = V(g2)$name[[j]] 

      V(g2)[j]$filter = mean(filter.weights[names]) 

    } 

    V(g2)$N = i 

    g = suppressWarnings(g %du% g2) ## add on the new cluster vertices; nothing is 

joined yet 

  } # do all the middle slices 

 

  #last slice is one-sided in the other direction 

  rule = filter.weights <= sortweight[ceiling((N-1-overlap)*nweights/N)] 

  if(distance.matrix ==TRUE){data.section = data[rule,rule]} else{data.section = 

data[rule,]} 

  labels = labelblank[rule] 

 

  ## do clustering 

  if(!h.true){ 

    if(!constant.cut){ 

      h = ask_h(data.section, method = cluster.method, max.k = max.k, distance.matrix = 

distance.matrix) 

    } 
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  } else{h = h.list[N]} 

  if(is.na(h)){ 

    h = ask_h(data.section, method = cluster.method, max.k = max.k, distance.matrix = 

distance.matrix) 

    # lets you edit single points in place 

  } 

  hlist = c(hlist, h) 

  if(distance.matrix){tree = hclust(as.dist(data.section), method = cluster.method)} 

  else{tree = hclust(dist(data.section), method = cluster.method)} 

  tree$labels = labels 

  clusters = cutree(tree, h = h) 

 

  ## start building the network 

  g2 = graph.empty(directed=FALSE) + vertices(labels) 

  g2 = contract.vertices(g2, as.vector(clusters)) 

  for(j in V(g2)){ 

    names = V(g2)$name[[j]] 

    V(g2)[j]$filter = mean(filter.weights[names]) 

  } 

  V(g2)$N = N 

  g = suppressWarnings(g %du% g2) ## add on the new cluster vertices; nothing is joined 

yet 
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  attributes(g)$hlist = hlist # i think this just vanishes into aether at the moment 

 

  return(g) 

} 

 

connect_rough_pop_graph = function(g, data, filter.weights, N, overlap, 

distance.matrix){ 

  ## in hindsight I don't think anything except 

  ##    new.edges = vertex.overlap(g, rownames(data), "members") 

  ##    g[from = new.edges[1,], to = new.edges[2,]] = TRUE 

  ## is required for all of this functionality 

 

  labelblank = c(1:length(data[,1])) # for us to slice labels out of for the trees 

 

  ## counts down from the highest weight in n-many evenly (or as much as possible) 

distributed groups 

  sortweight = sort(filter.weights, decreasing = TRUE) 

  nweights = length(sortweight) 

 

  for(i in 1:(N-1)){ # for N intervals, there must be N-1 overlapping regions 

 

    top = sortweight[ceiling((i - overlap)*nweights/N)] 

    bottom = sortweight[ceiling((i + overlap)*nweights/N)] 
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    rule = filter.weights >= bottom & filter.weights <= top 

 

    if(sum(rule) > 0){ 

      labels = labelblank[rule] # we don't need to calculate clustering on them, just grab 

overlap labels 

      vertex_set = vertex.overlap(g, labels, "name") 

      g[from=vertex_set[1,], to=vertex_set[2,]] = TRUE 

 

    } 

  } 

 

  return(g) 

} 

 

make_rough_size_graph = function(data, filter.weights, cluster.method, N, overlap, 

                                 max.k, distance.matrix, constant.cut, h.list, h.true){ 

  filt.min = min(filter.weights) 

  filt.int = (max(filter.weights) - filt.min)/N 

  labelblank = c(1:length(data[,1])) # for us to slice labels out of for the trees 

  h = constant.cut 

  g = graph.empty(directed = FALSE) # to add vertices to later as we get clusters 

  hlist = NULL 
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  for(i in 1:N){ 

    bottom = filt.int*(i-1 - overlap) + filt.min 

    top = filt.int*(i + overlap) + filt.min 

 

    rule = filter.weights >= bottom & filter.weights <= top 

    ## if rule is empty, then no points fall in this range and we just end this iteration 

    ## otherwise, behavior depends on 1 vs not-1 

    if(sum(rule) > 1){  ## when there's only 1 point, the distance function breaks down on 

the vector 

      if(distance.matrix ==TRUE){data.section = data[rule,rule]} else{data.section = 

data[rule,]} 

      labels = labelblank[rule] 

 

      ## do clustering 

      if(!h.true){knn 

        if(!constant.cut){ 

          h = ask_h(data.section, method = cluster.method, max.k = max.k, distance.matrix = 

distance.matrix) 

        } 

      } else{ h = h.list[i]} 

      if(is.na(h)){ 

        h = ask_h(data.section, method = cluster.method, max.k = max.k, distance.matrix = 

distance.matrix) 
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        # lets you edit single points in place 

      } 

      hlist[i] = h 

      if(distance.matrix){tree = hclust(as.dist(data.section), method = cluster.method)} 

      else{tree = hclust(dist(data.section), method = cluster.method)} 

      tree$labels = labels 

      clusters = cutree(tree, h = h) 

 

      ## start building the network 

      g2 = graph.empty(directed=FALSE) + vertices(labels) 

      #plot(g2) 

      g2 = contract.vertices(g2, as.vector(clusters)) 

      ## add a vertex attribute to shade the vertices by the average filter value for the cut 

      V(g2)$filter = (top + bottom) / 2 

      V(g2)$N = i 

      g = suppressWarnings(g %du% g2) ## add on the new cluster vertices; nothing is 

joined yet 

    } else if(sum(rule) == 1){ # when there's only one point we can just add it directly to 

the graph 

      labels = labelblank[rule] 

      g2 = graph.empty(directed = FALSE) + vertex(labels) 

      V(g2)$filter = (top + bottom) / 2 

      V(g2)$N = i 
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      # no need to contract the single vertex 

      g = suppressWarnings(g %du% g2) 

    } 

  } 

  if(length(hlist) < N){ 

    hlist[N] = NA 

  } 

  attributes(g)$hlist = hlist 

  return(g) 

} 

 

connect_rough_size_graph = function(g, data, filter.weights, N, overlap, 

distance.matrix){ 

  filt.min = min(filter.weights) 

  filt.int = (max(filter.weights) - filt.min)/N 

  labelblank = c(1:length(data[,1])) # for us to slice labels out of for the trees 

  for(i in 1:(N-1)){ # for N intervals, there must be N-1 overlapping regions 

    bottom = filt.int*(i - overlap) + filt.min # this is the bottom of the /next/ interval from 

above 

    top = filt.int*(i + overlap) + filt.min 

    rule = filter.weights > bottom & filter.weights < top 

 

    if(sum(rule) > 0){ 



192 

 

      labels = labelblank[rule] # we don't need to calculate clustering on them, just grab 

overlap labels 

      vertex_set = vertex.overlap(g, labels, "name") 

      g[from=vertex_set[1,], to=vertex_set[2,]] = TRUE 

    } 

  } 

 

  return(g) 

} 

 

vertex.overlap = function(graph, labels, attr, gids = FALSE){ 

  #new.edges = vertex.overlap(g, rownames(data), "members") 

  edge.matrix = NULL 

  z = get.vertex.attribute(graph, attr) 

  for(i in 1:length(labels)){ 

    res = lapply(z, function(ch) match(labels[i], ch)) # find which nodes have the members 

    vertices = which( !is.na(t(res))) # flip the weird list, pull out node indices which hit in 

res 

    if(length(vertices) >= 2){ # so only pairs get linked 

      new.edges = combn(vertices, 2) # put all pairs of those things together to join them all 

to each other 

      edge.matrix = cbind(edge.matrix, new.edges) # big ol thing to hold all the new edges 

    } 
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  } 

  # hack fix 

  if(gids){ 

    if(length(V(graph)$gid) > 0){ # make sure it doesn't break 

      row1 = V(graph)$gid[edge.matrix[1,]] 

      row2 = V(graph)$gid[edge.matrix[2,]] 

      edge.matrix = rbind(row1, row2) 

    } else{warning("No gids present, ignoring gids argument and returning vertex ids")} 

  } 

 

  return(edge.matrix) 

} 

 

ask_h = function(data, method, max.k, distance.matrix = FALSE){ 

  old.par = par(mfrow = c(1,2)) 

  if(method == "single" | method == "complete"){ 

    data = unique(data) # avoids weird joins at 0, doesn't 

                        # work when centroids or averages used 

  } 

  if(distance.matrix){C = hclust(as.dist(data), method = method) 

  } else{C = hclust(dist(data), method = method) 

  } 

  hist(C$height[C$height > 0], breaks = min(ceiling(length(C$height)/2), 20), col = "red") 
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  if(nrow(C$merge) > 1){ 

    plot(C) 

  } 

  h = NA 

  while(is.na(h)|h <= 0){ 

    h = readline("What height should we cut the clusters at, according to this graph?: ") 

    h = ifelse(grepl("[^0-9.]",h),-1,as.numeric(h)) 

  } 

  if(h > max(C$height)){h = max(C$height)} 

   

  return(h) 

  par(old.par) 

} 

 

## used to remap a vector such that the maximum value is 1 and the minimum value is 0, 

linear scale 

scale01 = function(vector){ 

  vector = (vector - min(vector))/(max(vector)-min(vector)) 

  return(vector) 

} 

 

knn.estimate.weights = function(data, k, distance.matrix = FALSE, dist.sort = FALSE, 

dim = NA){ 
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  ## check to make sure data isn't too high-dimensional 

  if(!dist.sort){ 

     

    if(distance.matrix){ 

      while(is.na(dim)|dim <= 0){ 

        dim = readline("What dimensional space is the data from? (i.e. R^n): ") 

        dim = ifelse(grepl("[^0-9.]",k),-1,as.numeric(dim)) 

      } 

    } else{dim = ncol(data) 

    } 

    if(dim > 341){ # 341 is experimentally the largest value that can be entered into cq 

      warning("Dimensionality too large, cannot produce knn estimates on larger than 341 

dimensional spaces") 

      return(-1) #error code -1 = dimensionality too large 

    } 

     

    if(distance.matrix){ 

      d = as.dist(data) 

    } else{d = dist(data, diag = TRUE, upper = TRUE) 

    } 

    n = nrow(as.matrix(d)) # number of data points 

    Rk = NULL 

    m <- data.frame(t(combn(1:n,2)), as.numeric(d)) 
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    for(i in 1:n){ 

      Rk[i] = (sort(m[m[,1]==i|m[,2]==i, 3])[k]) 

    } 

  } else{ 

    Rk = data[,k] 

  } 

  estimates = NULL 

  cQ = cq(q = dim) # calculated once to save time   

  Rk =  

   

    estimates = k/(n*cQ*Rk) # formula in reference below 

    # http://www.ssc.wisc.edu/~bhansen/718/NonParametrics10.pdf 

  return(estimates) 

} 

 

cq = function(q){return(pi^(q/2)/gamma((q+2)/2))} # used in the above function 

  # is the volume of a q-dimensional unit ball 

 

knn.weights = function(data, k, distance.matrix = FALSE){ 

  if(distance.matrix){ 

    d = as.dist(data) 

  } else{d = dist(data, diag = TRUE, upper = TRUE) 

  } 
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  len = length(data[,1]) 

  weights = NULL 

 

  m <- data.frame(t(combn(1:len,2)), as.numeric(d)) 

  for(i in 1:len){ 

    weights[i] = sum(sort(m[m[,1]==i|m[,2]==i, 3])[1:k]) 

  } 

  return(weights) 

} 

 

dist.sort = function(data, distance.matrix = FALSE){ 

  if(distance.matrix){ 

    d = as.dist(data) 

  } else{d = dist(data, diag = TRUE, upper = TRUE) 

  } 

  len = length(data[,1]) 

  weights = NULL 

   

  m <- data.frame(t(combn(1:len,2)), as.numeric(d)) 

  for(i in 1:len){ 

    weights = rbind(weights, sort(m[m[,1]==i|m[,2]==i, 3])) 

  } 

  return(weights) 
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} 

 

dist.corr = function(x, y, theta){ ## this function doesn't work yet 

  dsq = 0 

  dsq = ((x[1]+x[2]*cos(theta))-(y[1]+y[2]*cos(theta))) + (x[2] - y[2]) 

  d = sqrt(dsq) 

  return(d) 

} 

 

find.slice = function(data, distance.matrix = FALSE){ 

  hist(knn.weights(data, distance.matrix), col = "red", main = "Distance to nearest 

neighbor") 

} 

 

ask.k = function(data, k.low = 4, k.high = 15, distance.matrix = FALSE){ ## presents a 

series of histograms for the user to pick the best dist 

  if(distance.matrix){ 

    d = as.dist(data) 

    len = length(attributes(d)$Labels) 

  } else{ 

    d = dist(data, diag = TRUE, upper = TRUE) 

    len = nrow(data) 

  } 
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  weights = NULL 

 

  m <- data.frame(t(combn(1:len,2)), as.numeric(d)) 

  for(i in 1:len){ 

    weights = rbind(weights, sort(m[m[,1]==i|m[,2]==i, 3])) 

  } 

 

  k = 0 

  par(mfrow=c(2,3)) # change the plotting window so we can see many graphs at once 

  if(k.low < 2){ k.low = 2} # rowSums breaks if we hand it only a single column 

  for(i in k.low:k.high){ 

    hist(rowSums(weights[,1:i]), 

         main = paste("Sum of distances to the ", i, "-th nearest neighbors", sep = ""), 

         col = "red") 

  } 

  while(is.na(k)|k <= 0){ 

    k = readline("How many neighbors should be use according to these graphs?: ") 

    k = ifelse(grepl("[^0-9.]",k),-1,as.numeric(k)) 

  } 

  par(mfrow=c(1,1)) # put the plotting window back because this would suck for other 

plots 

  return(k) # fix the plot frame so it doesn't print 2x3 anymore 
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} 

 

id.to.responses = function(ids, map, imp.data, response.data){ 

  # sadly need to give the function all of the objects to chain together 

  imp.index = unique(unlist((V(map)$members)[ids])) 

  response.index = imp.index 

  return(response.data[response.index,]) 

} 

 

member.to.responses = function(members, imp.data, response.data){ 

  # basically the function above, started halfway through, depending on 

  # whether we have the node IDs or the member indices 

  imp.index = unique(members) 

  response.index = as.integer(rownames(imp.data)[imp.index]) 

  return(response.data[response.index,]) 

} 

 

write.Gephi = function(my.map, filepattern){ 

  if(length(unique(unlist(V(my.map)$name))) != length(unlist(V(my.map)$name))){ 

    V(my.map)$old.names = V(my.map)$name 

    V(my.map)$name = c(1:length(unlist(V(my.map)$name))) 

    warning("Wrote old names to attribute $old.names, new names given") 

  } 
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  my.df.v = get.data.frame(my.map, what = "vertices") 

  my.df.v = my.df.v[,!grepl("members$", colnames(my.df.v))] # sadly the member list is 

poorly behaved 

  colnames(my.df.v)[1] = c("Id") # seriously Gephi? You're weird 

  my.df.e = get.data.frame(my.map, what = "edges") 

  if(ncol(my.df.e) > 2){ 

    colnames(my.df.e)[1:3] = c("Source", "Target", "Weight") # seriously Gephi? You're 

weird 

  } else{ 

    colnames(my.df.e)[1:2] = c("Source", "Target") 

  } 

   

  node.path = paste(filepattern, ".node.list.csv", sep = "") 

  edge.path = paste(filepattern, ".edge.list.csv", sep = "") 

  write.table(as.matrix(my.df.v), file = node.path, row.names = FALSE, sep = ",") 

  write.table(as.matrix(my.df.e), file = edge.path, row.names = FALSE, sep = ",") 

} 

 

inject.attribute = function(map, truths, name, rel.per = NULL){ 

  for(i in 1:length(V(map))){ 

    subtruths = truths[V(map)$members[[i]]] 

    raw = sum(subtruths, na.rm = T) 

    present = raw > 0 
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    percent = raw / V(map)$membersize[[i]] 

    if(length(rel.per) > 0){ 

      relative = percent/rel.per 

    } else{ 

      relative = NULL 

    } 

     

    map = set.vertex.attribute(map, paste(name, '_present', sep = ""), i, present) 

    map = set.vertex.attribute(map, paste(name, '_raw', sep = ""), i, raw) 

    map = set.vertex.attribute(map, paste(name, '_percent', sep = ""), i, percent) 

    map = set.vertex.attribute(map, paste(name, '_relative', sep = ""), i, relative) 

  } 

  return(map) 

} 

 

# id.to.responses = function(ids, map, imp.data, response.data){ 

#   # sadly need to give the function all of the objects to chain together 

#   imp.index = unique(unlist((V(map)$members)[ids])) 

#   response.index = imp.index 

#   return(response.data[response.index,]) 

# } 
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