

Leonardo's Lintel: Analysis with 21st Century Tools

SETTING THE STANDARD
IMECE Track 16-2

Ethan Guenther, School of Mechanical Engineering, Purdue University

IMECE 2019-12653

Project Objectives and Goals

Analyze Leonardo's lintel using modern engineering tools and methods.

Discover how the mechanics of Leonardo's lintel differ from that of an Euler Bernoulli beam.

The tools and methods used are:

- CAD tools to visualize the structure
- 3D printing for structural realization
- Three point bend experiments
- Photoelastic experiments
- Finite element analysis

Background

Leonardo's lintel is constructed using a series of interlocking blocks to replace beams [1].

Figure 1: (a) Leonardo's original lintel design and (b) a 3D printed representation

Hypothesize that Leonardo's lintel deforms by compression processes only. Therefore, the response would be similar to that of a van Mises truss.

The van Mises truss would span from the support points to the load point.

The force v. displacement response possesses a peak load at a displacement equal to the half lintel height and fall to zero load at a displacement equal to the lintel height.

Lintel stiffness, maximum force and toughness would be linearly dependent on lintel length.

Leonardo's lintel is a one dimensional topologically interlocking structure. This work expands concurrent research on planar interlocking systems that replace plates [2, 3].

Methods & Procedures

Three Point Bend Experiments:

For three point bend experiments, 8 mm tall lintel pieces were 3D printed. The pieces were arranged into lintels ranging from 7 to 11 pieces. Lintels were placed under a wedge at the lintel center. A force sensor and a displacement sensor were used to collect force and displacement data.

Figure 2: The three point bend experiment set up

Figure 3: The nine piece lintel

Photoelastic Experiments:

For photoelastic measurements, 16 mm tall translucent pieces were 3D printed, arranged into a lintel, and placed under a wedge, bisecting the lintel. Images were taken throughout the loading process.

Figure 4: The photoelastic set up with two polarized filter sheets

Figure 5: The translucent lintel

Finite Element Model:

Finite element models were made using ABAQUS for lintels ranging from 6 to 10 pieces. Models were used to compute the force v. displacement response and the stress distribution.

Data and Results

Three Point Bend Experiments:

Figure 6: Sample force v. displacement curve

Figure 7: The average peak load, stiffness, and toughness of each lintel

Photoelastic Experiments:

Figure 8: Photoelastic images of a ten piece lintel in deformation

Finite Element Model:

Figure 9: Force v.

Seven Piece Lintel
Eight Piece Lintel
Nine Piece Lintel
Ten Piece Lintel
Ten Piece Lintel
Ten Poece Lintel
Ten Piece Linte

Figure 10:
Distribution of
compressive
principal stress
vectors for the
seven piece lintel

Conclusions

NSF REU Poster Competition

Experiments and analysis confirm the initial hypothesis that the load-deflection response of Leonardo's lintel resembles the van Mises truss.

Leonardo's lintel is a compression only structure. Stiffness, strength and toughness emerge as linear dependent on lintel length. The lintel exhibits a gradual failure response.

This behavior is in significant contrast to the Euler-Bernoulli beam, which sees tension and compression stresses, possesses a nonlinear dependence on beam length, and generally fails brittle.

REU Experience and Highlights

During this research experience I learned:

- How to perform finite element analysis via ABAQUS
- How to perform photoelastic analysis of a structure or member
- How to experimentally determine the force v. displacement response of a structure
- How to redesign an experiment when the original plan for an experiment does not work
- The value of using history to inform design of new technologies

Acknowledgments

The author would like to thank NSF for supplemental travel funds to this competition from grants CMMI-1935462 (PI Tian) and grant No. 1662177 (PI Siegmund). The author would also like to thank Dr. Siegmund for his guidance during the REU fellowship in summer 2019.

References

[1] www.codex-atlanticus.it, last accessed July 2, 2019.
[2] Siegmund, T., Barthelat, F., Cipra, R., Habtour, E. and Riddick, J., 2016. Manufacture and mechanics of topologically interlocked material assemblies. Applied Mechanics Reviews, 68(4), p.040803.
[3] Mirkhalaf, M., Sunesara, A., Ashrafi, B. and Barthelat, F., 2019. Toughness by segmentation: Fabrication, testing and micromechanics of architectured ceramic panels for impact applications. International Journal of Solids and Structures, 158, pp.52-65.