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INTRODUCTION 
 

This summary deals with a fundamental question in any 
reactor model validation practice: given a body of available 
experiments, and an envisaged domain of reactor operating 
conditions (referred to as reactor application), can one 
develop a quantitative measure that measures the portion of 
the prior uncertainties of the reactor application that is 
covered by the available experiments? Coverage here means 
that the uncertainties of the reactor application are originating 
from and behaving in exactly the same way as those observed 
at the experimental conditions. This approach is valuable as 
it provides a scientifically defendable criterion by which 
experimentally measured biases can be credibly extrapolated 
(i.e., mapped or scaled) to biases for the reactor applications. 
Our proposed approach is referred to as physics-guided 
coverage mapping (PCM), and in this introductory summary, 
we will demonstrate its application to fission reactors 
criticality safety applications. Potential advantages of PCM 
over the methods of similarity (representativity), data 
adjustments (also known as data assimilation or model 
calibration) commonly employed in the nuclear community 
will be briefly discussed. 

 
BACKGROUND ON MODEL VALIDATION  
 

Model validation measures the degree to which a given 
reactor model is a true representation of the real reactor 
behavior for the intended range of reactor operation. To deem 
a validation exercise a success, one must be able to answer 
the following question with quantitative confidence: is there 
sufficient evidence in terms of analysis and experiments that 
the simulation predictions will be satisfactory for the 
intended reactor application? The criterion for satisfactory 
predictions is that the discrepancies between true and 
predicted future reactor responses can be bounded with high 
probability by pre-determined margins. And the margins are 
to be estimated based on a proper account of all sources of 
uncertainties in the simulation plus some administrative 
margin to account for unknown sources of uncertainties.  

To perform validation, two major tasks must be 
accomplished. The first task is experimental in nature; it 
involves the construction of experiments whose design is 
similar to the intended reactor application, with the primary 
goal of measuring the discrepancies (referred to hereinafter 

as experimental biases) between measured and model-
predicted responses. The experiments are required because 
no validation is credible without some level of comparison 
against reality. The second step is computational, wherein 
model predictions at reactor conditions are employed in 
conjunction with the experimental biases to determine the 
application biases and their uncertainties; the application 
biases estimate the expected discrepancies between the 
predicted and future measured responses for the reactor 
application. If done correctly, the estimated application 
biases will be close to the true application biases which are 
observed when the real reactor is in operation.  

We will refer to this process as ‘mapping’ (sometimes 
referred to as ‘scaling’ or ‘extrapolation process’ by other 
practitioners). The mapping will describe the mathematical 
transformation employing experimental biases, and analysis 
results of the experiments and the reactor application to 
determine the application biases and their uncertainties.  

This summary introduces a method called physics-
guided coverage mapping, or in short PCM, designed to map 
the biases from the experimental domain to the domain of 
reactor application by relying solely on the physics of the 
simulation while taking into account all sources of simulation 
uncertainties. The target of the PCM methodology is the 
calculation of a metric referred to as ‘coverage’ which 
measures the portion of the prior uncertainty of the reactor 
application that can be explained, i.e., covered, by the 
experimental measurements. It is important to note that the 
notion of coverage or lack thereof has been employed before 
[1]. Our goal here is to introduce a new definition that can 
address some of the challenges faced by earlier definitions. 
For example, in the nuclear community, the term ‘similarity’ 
(and sometimes ‘representativity’ [2]) has been coined to 
quantitatively measure the resemblance between an 
experiment and the reactor application of interest.  

To motivate the discussion we recall some of the 
definitions employed in the nuclear criticality community 
involving the use of data assimilation and similarity indices. 
Let the physics model describing the experiment be given by: 

 ex ,exy f x u  

where x are basic physics parameters (such as cross-sections) 
and u are the experiment’s control parameters (such as the 
experiment’s materials, geometry, and composition 
specifications, etc.). One can abstractly describe the 



experimental design in terms of these control parameters, 
which are tuned to make sure the experiment is as similar as 
possible to reactor application. The exy  are the responses of 

the experiment as predicted by the model. Let msr
exy  be the 

experimental measurements corresponding to the model 
predictions exy . Next, define the reactor application using: 

 ,rc rcy f x v  

where x are the same basic physics parameters employed 
earlier in the modeling of the experiment, and v are control 
parameters that describe the reactor design, e.g., size of the 
core, enrichment, etc. Notice that the experiments and the 
reactor conditions have different control parameters (i.e., u 
vs. v), and different functions (i.e., fex vs. frc); however, they 
both share x as part of their input data. Finally, the prior 
uncertainties for the basic physics parameters are described 
by a PDF ( )prip x . To simplify the discussion, we will employ 

Gaussian PDFs to describe the prior parameter uncertainties. 
Generalization to non-Gaussian PDFs is straightforward, 
however it will be left to a future article. A multi-variable 
Gaussian distribution is fully described by a mean vector and 
a covariance matrix, denoted by prix  and priC , respectively.    

The conventional calibration practice, depicted in Fig. 1, 
employs an adjustment-based approach to the calculation of 
reactor application biases [See Section (21) of Ref. 3]. This 
is done based on the assumption that the experiment biases 
originate from uncertainties in the basic physics parameters. 
A minimization search is formulated to calculate a posteriori 
estimate of physics parameters that minimizes the 
discrepancies between the measured and predicted responses. 
Because the number of measured responses is often much 
lower than the number of uncertain physics parameters, the 
minimization problem is expected to have an infinite number 
of solutions. To render a well-posed search, prior information 
for the physics parameters is employed to regularize (i.e., turn 
an ill-posed into a well-posed problem) the search, described 
mathematically (for the parameter Gaussian case) as follows 
(this approach is also referred to as Bayesian Estimation): 
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where the first term is called the misfit term, measuring the 
discrepancy between measured and predicted experimental 
responses; the initial (i.e., prior to adjustment) value of this 
term is equal to the experiment bias. And the second term is 
called the regularization term, where x  represents the best 

guess for the physics parameters based on prior information, 
i.e., before the experimental measurements are collected. The 
confidence in the prior values of the parameters is described 
by the prior covariance matrix Cpri, which is used as weight 
for the regularization term. This weighting ensures that 
parameters with very small uncertainties are hardly adjusted 
because they are accurately known, whereas parameters with 

high prior uncertainties are allowed to adjust within their 
prior uncertainty limits to better fit the measurements. The 
results of this minimization search are a set of adjusted 
parameter values, denoted by pstx , and an updated covariance 

matrix, referred to as the posteriori covariance matrix, Cpst.  

 
Fig 1. Adjustment-based Approach for Bias Mapping 

 
The minimizer pstx  is believed to improve prior 

knowledge of physics parameters and is hence employed to 
re-evaluate the application responses as follows: let 

 ,pri
rc rc priy f x v  and  ,pst

rc rc psty f x v  represents the priori 

and posterior application responses, respectively. If reactor 
measurements are available, let them be denoted by msr

rcy , the 

premise of this approach is that:  
msr pri msr pst
rc rc rc rcy y y y   , 

which means that the posteriori predicted responses are closer 
to the measurements than the prior predictions. Using the 
posteriori parameter covariance matrix, the responses 
uncertainties calculated with the adjusted parameters can be 
estimated. The premise of this approach is that the posteriori 
responses uncertainties for the reactor application will be 
statistically consistent with the discrepancies between the 
measured and predicted future responses of the reactor 
application. This approach however faces several 
fundamental challenges, which are detailed elsewhere (see 
Ref [4]), but briefly summarized here. It requires adjustment 
of basic physics parameters, a practice that is frowned upon 
by physicists and practitioners, simply because there is no 
guarantee that the adjusted parameters will in fact improve 
predictions for the application. Instead, similarity indices are 
employed to describe in a semi-quantitative way the 
closeness between the experiment and the application: 
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where the vectors exg  and rcg  are the gradients of a given 

response, e.g., critical eigenvalue, with respect to the basic 
physics parameters x as calculated from the experiment and 
the reactor application models, respectively. This metric 
takes on values between zero and one to provide a single 



number that measures similarity. We call it semi-quantitative 
because it is only used as a ball-park metric to exclude from 
the adjustment procedure any experiments that are not close 
enough to the application. Based on private communication 
with practitioners of similarity indices, a similarity below 
0.85 is often used as the cut-off below which experiments are 
considered to be non-representative of the application. 

The primary weakness of the data adjustment approach 
lies in its basic assumption - that is the observed biases are 
solely originating from physics parameter uncertainty. When 
other sources of uncertainty are prominently present, referred 
to as modeling uncertainty, the posteriori parameter values 
have to be over- or under-adjusted to account for modeling 
uncertainty. The impact of these over or under-adjustments 
may be significant enough to deteriorate the predictions for 
the reactor application. This is a challenging situation 
because it is difficult to hedge against the impact of modeling 
uncertainty because they are typically unknown. Over the 
past fifteen years, the problem of model calibration under the 
influence of modeling uncertainty has occupied the attention 
of many practitioners, including applied mathematicians and 
statisticians, who have made several prominent proposals to 
account for the impact of modeling uncertainty on the 
adjusted parameters [5]. This problem however is arguably 
far from being solved.  
 
DESCRIPTION OF PROPOSED APPROACH 
 

PCM overcomes the primary challenges of data 
adjustment techniques by attacking the problem from a 
different angle. Existing methods break up the problem into 
two steps. The first step attempts to identify the numerous 
sources of uncertainties, done via adjusting of the various 
uncertain parameters. In step two, the adjusted parameters are 
used to simulate the behavior of the application of interest. 
We attack the problem directly by asking how do the 
experimental and application responses relate to one another? 
If a relationship can be established, as discussed in Ref. [6], 
one can map biases and their uncertainties from the 
experimental domain to the application domain directly 
without having to identify the sources of uncertainties. 
Moreover, the quality of the relationship will determine the 
confidence by which biases can be mapped between the two 
domains. If many sources of uncertainties, e.g., modeling 
uncertainties, exist in say the application but not in the 
experimental domain, it will deteriorate the relationship 
between the two domains, and hence the mapping of biases 
will incur large penalty (i.e., uncertainty) due to the 
additional sources of uncertainties. The advantage of this 
approach is immediately apparent when considering that the 
problem of determining a relationship between the 
application and experimental responses is well-posed, and 
does not involve any inversion or optimization, thereby 
precluding the need for regularization. 

We know describe the execution of the PCM algorithm. 
Assume that one is starting with M different experiments and 

a single application. Assume each experiment comes with a 
measured value for the response of interest, denoted as

( )
exp,
i

msry  , i =1, …, M. Next, execute the forward models for 

the application and the M experiments and obtain the 
reference values for the application response appy  , and that 

of the experiments ( )
exp
iy , i=1,2…, M. The goal is to employ 

the biases ( ) ( )
exp exp,
i i

msry y , i=1,…, M to determine a bias for the 

application response. The PCM algorithm proceeds as 
follows: 
1. Identify all sources of uncertainties in the experiments 

and the application. Let x denote the common sources, 
while ui refers to the sources unique to experiment #i, 
and v those of the application. Examples are: x denotes 
cross-sections; ui denotes the fuel to moderator ratio, 
geometry of the unit cell, etc., in the experiment #i, and 
v denotes uncertainties in one of the core parameters in 
the reactor application, e.g., the flow rate. Note that in 
general the ui and v will be independent of one another. 

2. Generate N samples of x, ui, and v. 
3. Execute application and M experiments computational 

models N times, each corresponding to one of the 
samples. This step represents an uncertainty analysis 
done for each of the experiments and the application. 

4. Let the N responses from the application and experiment 
#i be denoted by vectors y and gi both of length N, 
respectively, where i = 1,…, M 

5. Find a relationship between the response of the 
application and the M experimental responses using the 
N training datasets. This step can be completed in many 
different ways. See discussion below. 

6. Based on relationship in 5, determine what the 
application response should be, denoted by a vector yproj 
of N components. This variable is expected to be 
different from y, because not all aspects of the 
application are captured by the experiments. The idea is 
to compare these two vectors to determine coverage.  

7. Draw a scatter plot of the components of y against those 
of yproj. If the experiments are indeed perfectly 
representative of the application, one would get a perfect 
contour that relates the two quantities. In reality, the 
scattered points will define a trend which describes the 
dependence of the application on the experiments, and 
the degree of the scatter will determine the uncertainty 
of this dependence.  

8. Using measured experimental biases as input to the 
relationship developed in 5, determine the estimated 
application bias, denoted, yproj,msr 

9. Using the scatter plot in 7, determine possible values of 
application bias that corresponds with value of yproj,msr 

 
The relationship in step 5 may be determined parametrically, 
i.e., using response surface methods, or via a large number of 
non-parametric statistical techniques, e.g., order statistics, 
kernel density estimators, projection pursuit techniques, etc. 



In this introductory presentation, we will use a simple 
parametric approach based on a linear surrogate model. 
Extension to other techniques will be part of future work. The 
model in Eq. 5 employed here is constructed as follows. Let 
the N samples for the application and experiments follow the 
following linear mapping: 

( ) ( ) ( ) ( )
1 1 2 2 ..... ,   1,...,i i i i

M My g g g i N        

This equations can be satisfied only in a least-squares sense, 
which is used to determine the coefficients i . Following 

that, determine qproj according to step 6. The N samples of y 
and yproj are then graphed using a scatter plot on the x and y-
axes, respectively, per step 7. Per step 8, the estimated 
application bias is given by: 

   (1) (1) ( ) ( )
, 1 exp, exp exp, exp..... M M

proj msr msr M msry y y y y       

Using the scatter plot, determine the value of the application 
bias corresponding to estimated bias from the above equation.  
  
NUMERICAL RESULTS 
 

For this preliminary study, the sensitivity profiles for 31 
critical experiments formed the pool of our analysis. The first 
K experiments (taken at K=10, and K=30) are grouped 
together to represent the experimental domain. Experiment 
#31 is taken to represent the application of interest. Using 
PCM, N samples for the experimental responses and the 
application are calculated. Based on fitting to a linear model, 
the application responses estimated based on the experiments 
are scatter-plotted against the original application responses 
as done in Fig. 2. This figure may be used as follow: based 
on the M experiments biases, calculate the application bias, 
and its uncertainty. Look up the calculated bias on the y-axis, 
and establish a band around it describing its uncertainty, and 
move horizontally to the scattered points, then vertically to 
determine the corresponding value on the x-axis, and its 
uncertainty. In practice, this can be done analytically using 
kernel density estimators, but for the sake of this introductory 
presentation, a graphical description is provided. The results 
in Fig. 2 are not surprising as they show the dependence of 
the application on the experiments as more experiments are 
added. The value of this approach is that one can see clearly 
the relationship between the experiments and the application, 
and the impact of uncertainties on the mapped biases.  

 
CONCLUSIONS 
 

This manuscript has introduced a data adjustment-free 
methodology to support the mapping of biases from the 
experimental to application domain, which relies on the 
physics of validation experiments and reactor conditions to 
scale experimental biases to domain of reactor operation. 
This is based on a joint uncertainty analysis that quantifies 
the dependence between the experimental and application 
domains; thereby providing a unique ability to map biases 
and their uncertainties in a credible manner, which addresses 
the challenges of data adjustment techniques. 

 

 
(a) Coverage with 10 Experiments 

 
(b) Coverage with 30 Experiments 

 
Fig. 2. Application Coverage by Experiments 
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