

Ram B. Gupta

Program Director Energy for Sustainability National Science Foundation Arlington, VA 22230 gupta@nsf.gov

• Energy challenges

- Selected programs
 - Sustainable Energy Pathway
 - Emerging Frontiers in Research and Innovation
 - Energy for Sustainability

World Population

- Currently we need to design Food + Fuel supply for 7 10^9 people
- Over next 50 years, increase the supply to support **10.5 10**⁹ **people**

(World Populations: Fundamentals of Growth, 1990, gumption.org)

Energy Use in the United States

Estimated U.S. Energy Use in 2010: ~98.0 Quads ~10¹¹ GJ

Source: LLNL 2011. Data is based on DOE/EIA-0384(2010), October 2011. If this information or a reproduction of it is used, credit must be given to the Lawrence Livermore National Laboratory and the Department of Energy, under whose auspices the work was performed. Distributed electricity represents only retail electricity sales and does not include self-generation. EIA reports flows for hydro, wind, solar and geothermal in BTU-equivalent values by assuming a typical fossil fuel plant "heat rate." (see EIA report for explanation of change to geothermal in 2010). The efficiency of electricity production is calculated as the total retail electricity delivered divided by the primary energy input into electricity generation. End use efficiency is estimated as 80% for the residential, commercial and industrial sectors, and as 25% for the transportation sector. Totals may not equal sum of components due to independent rounding. LLNL-MI-410527

Energy Use in the United States

1. Electricity \longrightarrow Too much CO_2 emission

- 2. Natural Gas Plenty from Gas Shales (Some environmental concerns)
- 3. Petroleum \longrightarrow Most painful import! 4.7 10⁹ barrels/year = \$460 billion/year

Merit Review Process

- Proposal Preparation and Submission
- 3 Months

<u>Steps 4-7</u>

- Proposal Review and Processing
- 6 Months

<u>Steps 8-9</u>

- Award Processing
- 1 Month

Merit Review Criteria

- Intellectual Merit: potential to advance knowledge
- Broader Impacts: potential to benefit society

Five Review Elements

- 1. What is the potential for the proposed activity to:
 - a. advance knowledge and understanding within its own field or across different fields (Intellectual Merit); and
 - b. benefit society or advance desired societal outcomes (Broader Impacts)?
- 2. To what extent do the proposed activities suggest and explore creative, original, or potentially transformative concepts?
- 3. Is the plan for carrying out the proposed activities well-reasoned, wellorganized, and based on a sound rationale? Does the plan incorporate a mechanism to assess success?
- 4. How well qualified is the individual, team, or institution to conduct the proposed activities?
- 5. Are there adequate resources available to the PI (either at the home institution or through collaborations) to carry out the proposed activities?

Selected Programs Related to Energy Research:

- 1. Sustainable Energy Pathways (NSF 11-590)
- 2. Emerging Frontiers in Research and Innovation: Photosynthetic Biorefineries (NSF 12-583)
- 3. Energy for Sustainability (NSF 13-7644)

Sustainable Energy Pathways

Amount

\$36M for 20 awards

Awards

Up to \$500K/year Up to 4 years

Requirements

At least 3 PIs (one lead, 2 co-PIs) Represents 2 or more disciplines

Restrictions

Max 3 proposals per organization Max 1 proposal per PI, Co-PI, Senior personnel To develop efficient pathways towards sustainable energy, from starting points to ending points, via a systems approach in the priority areas of

- Sustainable Energy Harvesting, Conversion, and Storage
 - Energy harvesting and conversion
 - Energy storage solutions
 - Critical elements and materials
 - Nature inspired processes
 - Reducing carbon intensity
- Energy Transmission, Distribution, Efficiency, and Use
 - Transmission and distribution
 - Energy efficiency and management

SEP Projects, Sept. 2012, about \$2 million/each

- (1) Alkaliphilic microalgae-based sustainable & scalable processes for renewable fuels and products
- (2) Sustainable Housing through Holistic Waste Stream Management and Algal Cultivation
- (3) Consortium for Nature-Inspired Lignocellulosic Washington State University Biomass Processing
- (4) Sustainable Forest-Based Biofuel Pathways to Hydrocarbon Transportation Fuels: Biomass Production, Torrefaction, Pyrolysis, Catalytic Upgrading, and Combustion
- (5) Integrated National Framework for Cellulosic Un Drop-in Fuels

University of Toledo; Montana State University; University of North Carolina at Chapel Hill

Ohio University

Michigan Technological University

University of Maine

Solar and Batteries

SEP Projects, Sept. 2012, about \$2 million/each

Development of Economically (6) Viable, Highly Efficient Organic **Photovoltaic Solar Cells**

University of Chicago; Northwestern University; University of California-Los Angeles

- (7) **Routes to Earth Abundant Kesterite-** Pennsylvania State Univ University based Thin Film Photovoltaic Park; University of Florida; University **Materials** of Illionois at Urbana-Champaign
- (8) A Sustainable Pathway to Terawatt- University of Washington Scale Solution-Processed Solar Cells from Earth Abundant Elements

- (9) Earth-abundant thin-film solar cells University of Toledo as a sustainable solar energy pathway
- (10) Non-Aqueous Redox Flow Battery University of Michigan Ann Arbor **Chemistries for Sustainable Energy** Storage
- (11) A Lab-to-Market Paradigm for the University of Colorado at Boulder **Optimal Design of Sustainable Energy Storage Materials**

Wind, Tidal, Thermal, CO₂

SEP Projects, Sept. 2012, about \$2 million/each

(12) Sustainability of Tidal Energy

University of Washington

- (13) Collaborative: Achieving a University of Massachusetts
 Sustainable Energy Pathway for Wind Lowell; Wichita State University
 Turbine Blade Manufacturing
- (14) Pathways to Scalable, Efficient and Sustainable Soil Borehole Thermal Energy Storage Systems

University of Colorado at Boulder; Colorado School of Mines

University of Minnesota-Twin

- (15) A Novel Method Using CO2 and Geothermal Resources for Sustainable Energy Production and Storage
- (16) Sustainable co-synthesis of cement George Washington University and fuels

Cities

Buildings and Integration

SEP Projects, Sept. 2012, about \$2 million/each

- (17) A Unified Framework for Sustainability in Buildings through Human Mediation
- (18) Creating An Energy Literate Society Of Humans, Buildings, And Agents For Sustainable Energy Management

Education and Technology

Rensselaer Polytechnic Institute; University of Wisconsin-Madison University of Southern California

Integrated analysis framework

 (19) Integrating Heterogeneous Energy Resources for Sustainable Power Networks - University; North A Systems Approach
 (20) Sustainable Energy Pathways Through
 Johns Hopkins University; North Carolina State University Smith College
 University of New

Mexico

Selected Programs Related to Energy Research:

- 1. Sustainable Energy Pathways (NSF 11-590)
- 2. Emerging Frontiers in Research and Innovation: Photosynthetic Biorefineries (NSF 12-583)
- 3. Energy for Sustainability (NSF 13-7644)

Upscaling Photobiological Processes: the Sustainable Photosynthetic Biorefinery

Objective: Establish the fundamental principles which efficiently deliver light and CO₂ to photosynthetic microorganisms in scalable platforms for the sustainable & flexible production of fuels, chemicals, and bio-products

Expected Transformative Impact

- New paradigms for the rational/sustainable design and upscaling of photosynthesis-based, bio-manufacturing platforms that use sunlight and atmospheric CO₂ as inputs
- Advances in the basic science of flexibly transforming atmospheric CO₂ to complex and/or energy-rich molecules through metabolic processes
- Novel engineered systems for the emerging bio-economy

EFRI-PSBR Grants in FY12

Sept. 2012, \$2 million/each

(1) Cyanobacterial Biorefineries

University of Wisconsin-Madison

- Microalgae Lab-on-Chip Texas A&M University Main
 Photobioreactor Platform for Genetic Campus
 Screening and Metabolic Analysis
 Leading to Scalable Biofuel Production
- (3) The Diatom-based Photosynthetic Oregon State University Biorefinery

FY13 proposals are currently being reviewed

Energy for Sustainability Program

within

Chemical, Bioengineering, Environmental, and Thermal Systems (CBET) Division

Full Proposal Window: January 15, 2013 - February 19, 2013 January 15, 2014 - February 18, 2014

(Ongoing program NSF 13-7644)

Fundamental engineering research and education that will enable innovative processes for the sustainable production of electricity and transportation fuels. The processes must be environmentally benign, reduce greenhouse gas emission, and utilize renewable resources.

ENG/CBET Energy for Sustainability Program: Current Emphasis Areas: ~160 active grants

CBET Energy for Sustainability Program Current Investments: Biofuels & Bioenergy

Plant biomass conversion

- Pretreatment & enzymes
- Thermal-catalytic conversion to liquid hydrocarbons

Advanced biofuels

- Biofuels via metabolic engineering
- Energy-rich metabolites from algae
- Fuels from CO₂

Bioenergy

- Microbial/enzyme fuel cells
- Direct carbohydrate fuel cells
- Hydrogenase water-splitting to H₂

CBET Energy for Sustainability Program Current Investments: Wind & Wave Energy

Modeling & simulation (wind)

- Turbine aerodynamics & control
- Wind turbine farm interactions with atmospheric boundary layer

Advanced concepts (wind)

- Gas-expanded lubricants
- Piezoelectric systems
- Floating structures
- Tethered systems

Wave/Tidal/Hydrokinetic

Bio-inspired systems

Marilyn Smith, Georgia Tech (CBET 0731034) Advances in Wind Turbine Analysis and Design for Sustainable Energy

NSF Engineering Investments in Solar Photovoltaic (PV) Materials & Devices

Innovative integration of new materials & devices for 3rd generation PV

- Nanowires, nanotubes
- Nanocrystalline/thin film
- Earth-abundant materials
- Multi-junction/hybrid stacks
- Plasmonic structures
- Photonic structures
- Dye-sensitized solar cells
- Polymer-based photovoltaics
- Self-assembled systems
- Biomimetic/bioinspired systems

Russel Holmes, University of Minnesota

Cherie R. Kagan Univ. of Pennsylvania

CBET Energy for Sustainability Program Current Investments: Batteries

For Transportation: High energy and power densities

- Lithium ion
- Sodium ion
- Lithium air
- New cathode chemistries
- Novel electrode materials
- Convection batteries
- All solid-state batteries

Li-air batteries hold the promise of increasing the energy density of Li-ion batteries by as much as 10 fold. (http://www.transportation.anl.gov)

Thanks for your attention

NSF-funded researchers have won more than 200 Nobel Prizes!

