



# **Optimal Synthesis and Planning of Sustainable Chemical Processes**

Ignacio E. Grossmann Center of Advanced Process Decision-making Department of Chemical Engineering Carnegie Mellon University Pittsburgh, PA 15213, U.S.A.

Purdue - Mexico Workshop on Sustainability, Purdue University April 29-30, 2013



# **Motivation**



**1. Increasing need to design sustainable energy systems and supply chains** 

- 2. Need to address design of sustainable chemical processes
  - Minimize energy use
  - Minimize water consumption
- **3. Need to account for life cycle assessment in supply chains**

**Goal:** Systematic Optimization Approaches for the Synthesis and Planning of Sustainable Chemical Processes

**Challenges:** Develop effective mathematical programming models and solution approaches for sustainable water, energy systems, and supply chains









### **Overall 70% increase**





# **Growing emissions of CO**<sub>2</sub>



Sheppard, Socolow (2007)





## **Renewables: Carbon footprint various Energy Options**



Adisa Azapagic (2012)







## **Oil Reserves**

Year 2000 Total: 1105 thousand million barrels

## Year 2010 Total: 1383 thousand million barrels



Discovery of New Large Oil and Gas Reserves
 New technologies for Offshore oil exploration and production

\*Statistical Review of World Energy (June, 2011)



# Depletion of fossil fuels?

## **Growth in Shale Gas**



#### Horizontal drilling Hydraulic fracking





## In 2035 close to 50% from Shale Gas

Northeast: from 0.3 trillion scft 2009 to 5.8 trillion scft 2035







## Shale Resources



units = trillion cubic feet

Larger circles = technical reserves Smaller circles = potential reserves



yellow = current useage blue = estimate for 2035

Sonal Patel, "THE BIG PICTURE: A Shale Gas Revolution", Power, June 2012.



## Water scarcity





- Physical water scarcity (water resources development is approaching or has exceeded sustainable limits). More than 75% of river flows are
- withdrawn for agriculture, industry, and domestic purposes (accounting for recycling of return flows). This definition—relating water availability to water demand—implies that dry areas are not necessarily water scarce.
- Approaching physical water scarcity. More than 60% of river flows are withdrawn. These basins will experience physical water scarcity in the near future.
- Economic water scarcity (human, institutional, and financial capital limit access to water even though water in nature is available locally to meet human demands). Water resources are abundant relative to water use, with less than 25% of water from rivers withdrawn for human purposes, but malnutrition exists.

Source: International Water Management Institute analysis done for the Comprehensive Assessment of Water Management in Agriculture using the Watersim model; chapter 2.

Two-thirds of the world population will face water stress by year 2025





**Potential for Optimizing Sustainable Processes** 

# **Optimal Synthesis of Water Networks and Simultaneous Optimization**

# **Optimal Design of Biofuel Plants**

**Optimal Water Management for Shale Gas** 

**Optimal Design Energy Supply Chains** 







**Optimization Model** 



# **Nonconvex NLP or MINLP**

min Cost

Objective function:

Subject to:

Splitter mass balances Mixer mass balances (bilinear) Process units mass balances Treatment units mass balances Design constraints

0-1 variables for piping sections

Model can be solved to global optimality



# **Superstructure of the integrated water network**

1 feed, 5 process units, 3 treatment units, 3 contaminants





MINLP: 72 0-1 vars, 233 cont var, 251 constrBARONoptcr=0.01197.5 CPUsec



## Optimal design of the simplified water network with 13 removable connections







$$\min \cdot \phi = F(x, u, v) + \sum_{i \in HU} c_{H}^{i} Q_{H}^{i} + \sum_{j \in CU} c_{C}^{j} Q_{C}^{j} + c_{fw} F_{fw}$$
s.t.  $h(x, u, v) = 0$ 

$$g^{P}(x, u, v) \leq 0$$

$$g^{HEN}(u, Q_{H}, Q_{C}) \leq 0$$

$$g^{WN}(v, F_{fw}) \leq 0$$

$$Need Water Targeting Model$$

$$x \in X, \quad u \in U, \quad v \in V$$



## **Novel freshwater LP targeting formulation**



Goal: determine minimum freshwater consumption

$$\begin{array}{ll} \min & Z = F_{jw} \\ \text{s.t.} & F^{k} = \sum_{i \in m_{in}} F^{i} \quad \forall m \in MU, k \in m_{out} \\ & F^{k}C_{j}^{k,\max} \geq \sum_{i \in m_{m}} F^{i}C_{j}^{i,\max} \quad \forall j, \quad \forall m \in MU, k \in m_{out} \\ & F^{k} = \sum_{i \in s_{out}} F^{i} \quad \forall s \in SU, k \in s_{in} \\ & F^{k} = \sum_{i \in s_{out}} F^{i} \quad \forall s \in SU, k \in s_{in} \\ & C_{j}^{k} = C_{j}^{i} \quad \forall j, \quad \forall s \in SU, \quad \forall i \in s_{out}, k \in s_{in} \\ & P_{in}^{p}C_{j}^{k} + L_{j}^{p} = P_{out}^{p}C_{j}^{i} \quad \forall j, \forall p \in PU, i \in p_{out}, k \in p_{in} \\ & C_{j}^{k,\min} \leq C_{j}^{k} \leq C_{j}^{k,\max} \quad \forall j, k \\ & F^{k,\min} \leq F^{k} \leq F^{k,\max} \quad \forall k \end{array}$$

**Proposition:** The minimum freshwater consumption predicted by the LP model is the same as the global minimum predicted by the NLP model under the condition that at least one contaminant reaches its concentration upper bounds as well as at all other process units from which reuse streams have non-zero flowrate.

### LP targeting formulation provides either exact target or tight upper bound







Note: Sum of components may not equal 100 percent due to independent rounding. Source: EIA, *Renewable Energy Consumption and Electricity Preliminary 2007 Statistics*, Table 1: U.S. Energy Consumption by Energy Source, 2003-2007 (May 2008).





## **Energy consumption corn-based process**

### Water consumption corn-based process

| Author (year)            | Energy consumption<br>(Btu/gal) | Author (year)                     | Water consumption<br>(gal/gal ethanol) |
|--------------------------|---------------------------------|-----------------------------------|----------------------------------------|
| Pimentel (2001)          | 75,118                          | Gallager (2005) First plants      | 11                                     |
| Keeney and DeLuca (1992) | 48,470                          | Philips (1998)                    | 5.8                                    |
| Wang et al. (1999)       | 40,850                          | MATP (2008)<br>Old plants in 2006 | 4.6                                    |
| Shapouri et al. (2002)   | 51,779                          | MATP (2008)                       | <u>3.4</u>                             |
| Wang et al (2007)        | <u>38,323</u>                   | New plants                        |                                        |

From Karrupiah et al (2007) 24,918 Btu/gal vs 38,323 Btu/gal Why? Multieffect distillation and heat integration From Martin and Grossmann (2010) <u>1.5 gal water/gal ethanol vs 3.4</u> Why? Integrated process network with reuse and recycle





## **Energy optimization**

**Issue:** fermentation reactions at modest temperatures

=> No source of heat at high temperature as in petrochemicals

Multieffect distillation followed by heat integration process streams

## Water optimization

**Issue:** cost contribution is currently still very small (freshwater contribution < 0. 1%)

=> Total cost optimization is unlikely to promote water conservation

**Optimal process water networks for minimum energy consumption** 

# **Energy Optimization of Corn-based Bioethanol**













# **Energy Optimal Design**



## 60 M gallon /yr plant





# **Energy Profiles in Multieffect Columns**





## **Rectification Column**





## **Remarks**



Current ethanol from corn and sugar cane and biodiesel from vegetable oils compete with the food chain.

**U.S. Government policies support the production of lignocellulosic based biofuels and the reuse of wastes and new sources (algae)** 



Year





## a) Thermochemical Process (gasification)



## b) Hydrolysis Process (fermentation)



## Many alternative flowsheets



**Ethanol via gasification** 







## Carnegie Mennen, M. Grossmann, I. E (2010) Aiche J. Submitted

# **Optimal Design of Lignocellulosic Ethanol Plant**





Each NLP subproblem: 7000 eqs., 8000 var ~25 min to solve

Low cost is due to H<sub>2</sub> production

### **Carnegie Mellon**

nical



**Carnegie Mellon** 

-Ahmetović , E., Martin, M. Grossmann, (2009) I&ECR. 2010, 49, 7972-7982

29



Gal. Water/Gal. Ethanol = 4.2



## Cellulosic Bioethanol via Gasification



#### **Carnegie Mellon**

30

## **Strategic Planning for the Design of Integrated Ethanol and Gasoline Supply Chain**

Andresen, Diaz, Grossmann (2012)



# **PROBLEM STATEMENT**

## ✓ Sienshifterst Statestagip Rlamning, madel

#### Given:

- ✓ Superstructure
- ✓ *Multiperiod model* with time horizon of 20 years.
- ✓ Means of transportation → truck, railway and pipeline (for gasoline)
- ✓ *Existing capacity* for ethanol plants (EP) and gasoline distribution center (GDC)
- ✓ *Potential capacity* for EP and GDC
- ✓ Fixed and variable *investment and operation costs*
- ✓ Number of Existing Gas Stations
- ✓ Feasible Set of Retrofits
- ✓ *Forecast of demand* for different blends over entire time
- horizon according to each region population
- ✓ *Economy of Scale* for capital investment (small medium large sizes) not in Gas Stations

#### **Determine**:

- ✓ Whether to *install, expand or not* EP and GDC
- ✓ Timing profile of different types of Gas Stations in each Region
- ✓ New Gas Stations and Retrofits over them to comply with blends demand
- ✓ *Flows in network* for each time period

# **PROBLEM FORMULATION**

# **Multiperiod MILP Model**

| Objective function: | min COST                          |
|---------------------|-----------------------------------|
| Subject to:         | Mass Balances                     |
|                     | Capacity constraints              |
|                     | Transportation constraints        |
|                     | Inventory level constraints       |
|                     | Gas Stations Model                |
|                     | Capital investment                |
|                     | Fixed and variable operation cost |
|                     | Demand at Retail Center           |

0-1 variables for investments on harvesting sites / ethanol plants / distribution centers Integer variables for number of Gas Stations

# **Example: Supply Blends in Alabama**

# MILP: 1400 0-1, 136,000 cont. var. 109,000 constraints

## Data

**Raw Materials** 

**Wood Residues – Switchgrass** 

### **Products**

E10 - E30 - E85

Transportation Modes

Truck – Railway – Pipeline (only for gasoline)

**Ethanol Technologies** 

Biochem – Thermochem – Hybrid (gasif+ferment)

Ethanol Plants & DC's Capacity

Low – Medium - Large

Existing number of GS in all Alabama state

2,219 (G1) - 315 (G2) - 134 (G3)

### Total SC Cost

Capital cost – Purchase cost (gasoline) – Distribution cost Production cost – Transportation cost – Inventory cost



- Harvesting Sites
- $\star$  Ethanol Plants
- Distribution Centers
- Retail Centers
- AL counties (76)
- Refineries





# **Results**





- 3 Harvesting Sites
- 3 Ethanol Plants
- 4 Distribution Centers
- 1 Gasoline Supply
- 67 Retail Centers

## Water management in shale gas production

### Yang, Grossmann (2014)

- » Concern 1: Large volume of water (3-5 MM gallons) to complete a well
  - > Accounts for 0.1% of all freshwater *withdrawal* in the US<sup>1</sup>
- » Concern 2: Most water used (65-80%) in fracking for shale is consumed
  - Accounts for 0.3% of all water *consumption* in the US<sup>1</sup>



#### Freshwater water withdrawals in 2005
## Water use logistics



## **Problem statement**

### » Objective

- Minimize transportation cost, treatment cost, freshwater cost, and additional infrastructure cost
- Maximize number of stages to be completed

#### » Given

- Freshwater sources
- Freshwater withdrawal data
- Location of well pads
- Location of treatment facilities

### » Determine

- Fracturing schedule & sequence
- Additional impoundment
- Additional treatment unit
- Recycle ratio

### Superstructure



## Flowback flowrate and concentration

- » Flowback volume is 15% of injected volume
- » No bilinear terms (flow times concentration)
- » Flowback rate and concentration profile are given



FIGURE 3.0: Example Flowback Volume vs. TDS Profile







**Flowback TDS concentration profile** 



## **Optimal Schedule**





## Sustainable Design and Planning of Hydrogen Supply Chains for Vehicle Use



Guillén-Gosálbez, Mele and Grossmann (2010)

### **Motivation**

• <u>Motivation</u> for the adoption of hydrogen:

**Reduces well-to-wheel GHG gases emissions** (Hugo et al., 2006)

Major obstacle to <u>achieve the hydrogen transition</u> (*Jensen and Ross, 2000*)
Developing an efficient infrastructure for producing and delivering hydrogen

## **Objective:**

Develop a framework for the design of infrastructures for producing and delivering  $H_2$ 

- Cover the entire supply chain (holistic view of the system)
- Include environmental concerns along with traditional economic criteria
- Develop an efficient solution method

**Basis:** case study by A. Almansoori and N. Shah (2006) in UK





## **Design of SCs for hydrogen production**



#### Production

- Steam methane reforming
- Coal gasification
- Biomass gasification

#### Transportation

- Liquid hydrogen (LH) tanker truck
- Liquid hydrogen (LH) railway tank car
- Compressed-gasous hydrogen (CH) tube trailer
- Compressed-gaseous hydrogen (CH) railway tube car

#### Storage

- Liquid hydrogen (LH) storage
- Compressed gas (CH) storage

#### • Given are:

- ✓ Demand of hydrogen
- ✓ Investment and operating costs
- ✓ Available technologies and potential locations (i.e., grids)
- $\checkmark$  GHG emissions associated with the SC operation
- The task is to determine the optimal SC configuration
- In order to minimize cost and environmental impact

#### **Carnegie Mellon**



# **Bi-criterion MILP Model**





- . Postulate a superstructure with all possible alternatives
- Build an MILP model with:
  - Economic and Environmental objective functions

### Min Cost

Min Environmental impact

s.t. Mass balances (defined for every grid)

**Capacity constraints (production and storage)** 

**Capacity constraints (transportation)** 

0-1 vars choices, cont vars flows

## Environmental aspects based on LCA (Eco-Indicator 99) C





### **Carnegie Mellon**

## **Environmental damage assessment: Global warming**



### 1. Calculate the GHG emissions (Life Cycle Inventory: analysis from the cradle to the grave)



- 2. Translate emissions into damage (damage to human health caused by climate change)
- Human health: DALYs (Disability Adjusted Life Years)



$$DAM = \sum_{b} v_{b} LCI_{b}$$

Damage factors translate life cycle inventory into impact

### **Carnegie Mellon**

ical



## **Solution strategy: Epsilon constraint**



### **Bi-criterion MILP** with economic and environmental concerns



**Environmental Impact** 

#### **Carnegie Mellon**

# **Pareto set of alternative solutions**



### **Environmental improvements are achieved through technological and topological changes**



- **Replace** steam reforming by biomass
- Do not use compressed gaseous hydrogen (too expensive)



## **Extreme solutions**



#### **Decentralized networks decrease the environmental impact**



MINIMUM COST: more <u>centralized</u> network (fewer plants, more transportation) Carnegie Mellon



MINIMUM IMPACT: more <u>decentralized</u> network (more plants, lower transportation emissions)



# Conclusions



- Mathematical programming offers a general modeling framework for including sustainability considerations in process synthesis and supply chain optimization problems
- Energy and water optimization yields sustainable designs of biofuel plants: Optimization predicts lower energy and water targets
- Water management optimization in Shale Gas Production has become a problem of great importance
  - Supply chain optimization of energy systems can have great impact on sustainability