Solar Economy-Is it Feasible?

Rakesh Agrawal

School of Chemical Engineering and The Energy Center at Discovery park Purdue University West Lafayette, IN 47907

Why is Energy Important?

©2012 R. Agrawal

World Population

Data source: Wikipedia & UN

James Watt and his 1769 steam engine

Source: David J.C. Mackay 2009

Energy Consumption is Way of Life in Industrialized Countries

2010 Primary energy consumption per capita

Energy Consumption is Way of Life in Industrialized Countries

2010 Primary energy consumption per capita

Fossil Fuel Provides 85% Energy!

The world population is expected to rise

©2012 R. Agrawal

- The world population is expected to rise
- World energy consumption rate is expected to rise

World Market Energy Consumption

- World primary energy usage rate in 2007 was 14.8 TW
 By 2050, the usage rate could be 28 TW
- By 2050, the usage rate could be 28 TW

Consumption rate could double!

PURDUE UNIVERSITY

©2012 R. Agrawal

Adaptation : EIA

- The world population is expected to rise
- World energy consumption rate is expected to rise

China's current economic growth is expected to accelerate energy consumption

China's Recent Energy Consumption

- Average growth rate over past quarter century > 10%!
- Current China's primary energy consumption = 17.8 billion boe
- Current USA's primary energy consumption = 16.7 billion boe

©2012 R. Agrawal

China's Recent Energy Consumption

- Average growth rate > 10%!
- •2007 China's primary energy consumption = 13.7 billion boe
- •Current China's primary energy consumption = 17.8 billion boe
- Current USA's primary energy consumption = 16.7 billion boe
- If primary energy @ per capita rate of Japan = 43.9 billion boe
- Current total world's energy consumption = 81.4 billion boe

- The world population is expected to rise
- World energy consumption rate is expected to rise
- China's current economic growth is expected to accelerate energy consumption

Oil production will peak during the lifetime of a child born today

- The world population is expected to rise
- World energy consumption rate is expected to rise
- China's current economic growth is expected to accelerate energy consumption
- Oil production will peak during the lifetime of a child born today
- For most nations it is national energy independence and security issue

- The world population is expected to rise
- World energy consumption rate is expected to rise
- China's current economic growth is expected to accelerate energy consumption
- Oil production will peak during the lifetime of a child born today
- For most nations it is national energy independence and security issue
- It takes a long time to develop a new energy source and its infrastructure

Fossil Energy: in context of human civilization

© Agrawal, 2012

Data source: Wikipedia & UN

Fossil Energy: in context of human civilization

Therefore, we must understand energy transformation and use issues to develop alternative energy strategies

© Agrawal, 2012

Data source: Wikipedia & UN

Some Alternate Resources

- Biomass
- Hydroelectricity
- Wind
- Geothermal
- Nuclear
- Solar

Solar is the only easily available energy source that can alone meet all the energy needs.

Solar economy vision

Agrawal and Singh, Annual Rev. Chem. Bio. Eng., 2010

©2010, R. Agrawal

Development of a Solar Economy Provides Unprecedented opportunity for Innovations

©2011, R. Agrawal

The Journey of Solar Photons

Looking through the lens of time

©2012, R. Agrawal

Absorption & Radiation from Earth's surface

Time spent ~ O(10⁰ s)

Solar

Energy

Dissipation during water cycle

Dissipation during carbon cycle

Harness solar energy

Transform solar Energy

Use it for human activities

Dissipate to outer space

©2012, R. Agrawal

Challenge for solar economy

Harness, Transform, Store and Use solar photons on a time scale of human activities ~ O(10³-10⁵ s)!

©2012, R. Agrawal

A Three Part Presentation

1. Harnessing of Solar Energy -- Solar Cells from Nanocrystal Inks

2. Transformation of Solar Energy --Energy System Analysis with Emphasis on Transportation Sector

3. Storage of Solar Energy -- A Chemical Storage Cycle

A Three Part Presentation

1. Harnessing of Solar Energy -- Solar Cells from Nanocrystal Inks

2. Transformation of Solar Energy --Energy System Analysis with Emphasis on Transportation Sector

3. Storage of Solar Energy -- A Chemical Storage Cycle

© R. Agrawal, 2012

Solar Cell

Solar Material Structure

Cu(In,Ga)Se₂ (CIGSe)Solar Cell

- High photon absorption coefficient
- Low material consumption
- Optimal bandgap by adjusting In/Ga ratio – higher voltage achievable
- Most efficient (~20%) amongst thinfilm solar cells at lab scale

32

Our CIGSe Liquid Deposition Method

Synthesis of CISe Nanocrystal Ink

Observed band gap = 1.04ev

HR-TEM of the Chalcopyrite Nanocrystals

[221] Zone Axis

Large area TEM image

HR-TEM of a nanocrystal

Scalable Coating Process and Dense Thin Film Formation

Slot, Knife, or Roll Coating

Rapid Thermal Processing (RTP) with Se at 500 °C to form a dense highly crystalline layer

Photovoltaic Device Performance

Cu(In,Ga)(S,Se)₂ Solar Cell

© R. Agrawal, 2012

However, a need to make thin film solar cells from earth abundant elements....

Thin Film Solar Cells From Earth Abundant

$Cu_2(In_yGa_{1-y})(S_xSe_{1-x})_4$

Cu₂ZnSn(S_xSe_{1-x})₄

- Earth-Abundant Materials
- Similar (Kesterite) Crystal System

Thin Film Solar Cells From Earth Abundant

CZTSSe Liquid Deposition

CZTSSe from Nanocrystal Ink

- Nanoparticle Optimization
- Sintering Optimization

Band Gap Tailoring with partial Ge substitution for Sn

Reproducible results > 9% efficiency with 30% Ge-alloying

© R. Agrawal 2012

Summary – Harnessing of Solar Energy: Nanocrystal Based Solar Cells

- Possible to make nanocrystal inks of the compound semiconductors.
- Proof-of-concept demonstrated for potentially low cost solar cells from nanocrystal inks.
- Kinetics of nanoparticle synthesis, insitu sintering of the absorber layer and optoelectronic characterization and modeling studies in progress to improve efficiency of these solar cells.

A Three Part Presentation

1. Harnessing of Solar Energy -- Solar Cells from Nanocrystal Inks

2. Transformation of Solar Energy --Energy System Analysis with Emphasis on Transportation Sector

3. Storage of Solar Energy -- A Chemical Storage Cycle

... Of all the end uses most challenging is transportation

UNIVERSITY

High Energy Density Fuel from Renewable Resources

An Obvious Choice is Use of Biomass for Liquid Hydrocarbon Fuel

Liquid fuels from biomass

Biomass Resource Classification

Agrawal and Singh, Annual Rev. Chem. Bio. Eng., 2010

ERSI

TY

What are the process options of converting biomass to liquid fuel?

Biomass -to-liquid fuel: carbon recovery

2. Agrawal and Singh, Annual Rev. Chem. Bio. Eng., 2010

IVERSITY

Self-contained processes + SA biomass for US transportation

- SA biomass availability potential= 498 Million metric tons/yr¹
- •Transportation fuels use in the USA, 2007 =13.28 Mbbl/day²

21% (2.8 Mbbl/day) of current US transportation demand produced using SA biomass with best self-contained process

- 1. Liquid transportation fuels NRC report, 2010
- 2. Davis et al., Transportation energy data book, 2009

UNIVERSITY

How do we increase liquid fuel from SA biomass?

1. Singh, Delgass, Ribeiro and Agrawal, *Environ. Sci. Tech.,* 2010 2. Agrawal and Singh, *Annual Rev. Chem. Bio. Eng.*, 2010

High oxygen content in biomass

Energy per carbon atom in biomass is lower than the corresponding energy per carbon atom in high energy density fuels such as gasoline

Biomass ~450 kJ/mol C Gasoline 605 kJ/mol C

Lower carbon recovery during conversion to high energy density liquid Fuel

Let us examine efficiencies at which supplemental forms of energy are recovered from Sunlight

Έ

Έ

UNIVERSITY

1. Zhu et al. Curr. Opin. Biotechnol., 2008

UNIVERSITY

UNIVERSITY

An Observation

Biomass Should be Viewed as a Source of Carbon and NOT as a Primary Source of Energy

An Observation

Biomass Should be Viewed as a Source of Carbon and NOT as a Primary Source of Energy

Challenge & Opportunity: Design New Processes to increase biomass carbon recovery

Available forms of supplementary energy to increase biofuel yield

- Heat
- •Electricity
- •H₂

Augmented Processes : up to 100% biomass carbon recoverable as liquid fuel

UNIVERSITY

Augmented processes using H₂

100% SA biomass carbon recovery for US transportation

- SA biomass availability potential= 498 Million metric tons/yr¹
- •Transportation fuels use in the US, 2007 =13.28 Mbbl/day²

47% (6.2 Mbbl/day) of current US transportation demand produced using SA biomass with H₂CAR process

- 1. Liquid transportation fuels NRC report, 2010
- 2. Davis et al., Transportation energy data book, 2009
- H₂CAR estimated yield: 329 ethanol-gallon-equivalent/ton

Still >50% of deficit liquid fuel demand exists

How can we harness incident solar energy efficiently to meet the demand?

Use other efficient secondary energy forms from Sun

UNIVERSITY

Use other efficient secondary energy forms from Sun

•Electricity via PHEVs for light duty vehicles (LDV)

•H₂ for Fuel Cell Vehicles

Use of PHEVs + Augmented processes (H₂CAR)

- SA biomass availability potential= 498 Million metric tons/yr¹
- Transportation fuels use in the US, 2007 =13.28 Mbbl/day²
- Liquid fuel produced from SA biomass = 6.2 Mbbl/day
- Oil potentially displaced by PHEV40 = 5.5 Mbbl/day³

88.1% (11.7 Mbbl/day equivalent) of current US transportation demand could now be met

- 1. Liquid transportation fuels NRC report, 2010
- 2. Davis et al., Transportation energy data book, 2009
- 3. Parks, Denholm and Markel, NREL/TP-640-41410, 2007

©2010, R. Agrawal

Systems analysis of the transportation sector and chemicals production Solar Energy ; Heat Electricity H₂0, CO₂ etc. Transportation Fuels and Chemicals

Synergistic integration at various levels needed!

©2010, R. Agrawal

Biomass

Agrawal and Mallapragada, AIChE J., 2010

Summary – Transformation of solar Energy: Analysis of Energy System

- Energy Systems Analysis is important it provides valuable insights.
- Must develop efficient and cost effective solutions for a world driven by renewable energy.
- Must provide solutions for transition from fossil to renewable energy
- Energy Systems Analysis is Fun!

A Three Part Presentation

1. Harnessing of Solar Energy -- Solar Cells from Nanocrystal Inks

2. Transformation of Solar Energy --Energy System Analysis with Emphasis on Transportation Sector

3. Storage of Solar Energy -- A Chemical Storage Cycle

GWh level Electrical Energy Storage

©2013 R. Agrawal

Some energy storage options

Reference: EPRI report on Storage Technologies, 2010

©2013 R. Agrawal

Hydro= pumped hydroelectric power, CAES= compressed air energy storage

Carbon fuels for energy storage

Avoid handling large volume of pressurized gas

Reference: EPRI report on Storage Technologies, 2010

Hydro= pumped hydroelectric power, CAES= compressed air energy storage

Closed carbon cycle for energy storage liquid $CO_2 \leftarrow \rightarrow$ liquid fuel

Very little external carbon required as make up!

Among carbon fuels.. ... consider the use of methane

Fuel	Exergy per carbon (kJ/mol C)
Methane	806
Ethane	723
Propane	692
Iso-octane	652
Cetane	640
Methanol	693
Ethanol	654
Dimethyl Ether (DME)	684

- $CH_4 \rightarrow$ highest energy content per carbon
- Liquefaction energy penalty (-162 °C)

Methane-cycle (Storage mode)

Minimize solar energy penalty of CH₄ liquefaction

SOEC=Solid Oxide Electrolysis

©2013 R. Agrawal

Methane-cycle (Delivery mode)

No additional power consumed for CO₂ capture and liquefaction!

Methane storage simulation results

Volume: Methane superior to other options

Simulations carried out using Aspen Plus

UNIV

RSI

Summary – Storage of solar Energy: A Chemical Storage Cycle

• High storage efficiency cycles using methane and carbon dioxide storage.

•Other chemicals should also be explored.

- Solar Economy is a must for long term existence of human civilization.
- •We will have to learn to harness, transform and store solar energy on a time scale of use.
- •Need for a careful systems analysis to identify synergies and create efficient conversion and use technologies.

Overall Summary " Great time to be a Scientist & an Engineer"

©2010, R. Agrawal

Acknowledgments (Current Collaborators)

Energy Systems Analysis and Distillation:

Prof. Mohit Tawarmalani (Krannert School of Management)

Biomass To Liquid Fuel:

Prof. Nick Delgass (Chemical Engineering)

- Prof. Fabio Ribeiro (Chemical Engineering)
- Prof. Maureen McCann (Biological Sciences Molecular Biosciences)
- Prof. Nick Carpita (Agriculture-Botany and Plant Pathology)

Prof. Hilkka Kenttämaa (Chemistry)

Prof. Mahdi Abou-omar (chemistry)

Solar Cell:

Prof. Mark Lundstrom (Electrical Engineering)

Prof. M. Ashraf Alam (Electrical Engineering)

Dr. Eric Stach (Brookhaven National Lab)

Dr. Hans Werner Schock and Thomas Unold (HZB, Berlin)

Funding Acknowledgment

NSF Solar Economy IGERT

DOE Distillation

DOE Liquid Fuels

DOE C3Bio EFRC

AFSOR Liquid Fuel

NSF EFRI

DOE SunShot

©2012, R. Agrawal

The Research Team

....Thank you

©2008, R. Agrawal

The all

Availability of Primary Energy Sources

©2012 R. Agrawal

World Oil Production

Total proven conventional oil reserve = 1383 billion bbl

©2012 R. Agrawal

World Oil Reserves-to-Production (R/P) Ratios

- Production is 14% higher than 1997 level
- USA R/P = 11.3 years
- USA R/Consumption = 4.4 years

PURDUE UNIVERSITY

©2012 R. Agrawal

Natural Gas Production

- Total proven gas reserve = 187.1 trillion m³
- Natural gas demand continues to rise

©2012, R. Agrawal

Natural Gas Reserves-to-Production Ratios

- Reserves are 64% above 1997 level
- Production is 14% higher than 1997 level
- USA R/P = 118 years*
- In USA, natural gas production has remained flat over the last decade, but sudden spike since 2007

Source : BP Statistical Review of world Energy 2011 * US Energy Information Administration

©2012 R. Agrawal

- Proven World Reserve = 860 billion tons
- World Reserve-to-Production Ratio = 118 years
- USA Reserve-to-Production Ratio = 241 years

©2012 R. Agrawal

It seems that there is enough hydrocarbon fuel to last for the next fifty years!

©2012 R. Agrawal

It seems that there is enough hydrocarbon fuel to last for the next fifty years!

©2012 R. Agrawal